Visible to the public Biblio

Filters: Keyword is automated design  [Clear All Filters]
2019-06-17
Rouhani, Bita Darvish, Riazi, M. Sadegh, Koushanfar, Farinaz.  2018.  Deepsecure: Scalable Provably-secure Deep Learning. Proceedings of the 55th Annual Design Automation Conference. :2:1–2:6.
This paper presents DeepSecure, the an scalable and provably secure Deep Learning (DL) framework that is built upon automated design, efficient logic synthesis, and optimization methodologies. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves up to 58-fold higher throughput per sample compared with the best prior solution. In addition to the optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of DL. Our extensive evaluations demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology.