Visible to the public Biblio

Filters: Keyword is static malware analysis  [Clear All Filters]
2023-09-20
Dhalaria, Meghna, Gandotra, Ekta.  2022.  Android Malware Risk Evaluation Using Fuzzy Logic. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :341—345.
The static and dynamic malware analysis are used by industrialists and academics to understand malware capabilities and threat level. The antimalware industries calculate malware threat levels using different techniques which involve human involvement and a large number of resources and analysts. As malware complexity, velocity and volume increase, it becomes impossible to allocate so many resources. Due to this reason, it is projected that the number of malware apps will continue to rise, and that more devices will be targeted in order to commit various sorts of cybercrime. It is therefore necessary to develop techniques that can calculate the damage or threat posed by malware automatically as soon as it is identified. In this way, early warnings about zero-day (unknown) malware can assist in allocating resources for carrying out a close analysis of it as soon as it is identified. In this paper, a fuzzy modelling approach is described for calculating the potential risk of malicious programs through static malware analysis.
2021-12-21
Ahn, Bohyun, Bere, Gomanth, Ahmad, Seerin, Choi, JinChun, Kim, Taesic, Park, Sung-won.  2021.  Blockchain-Enabled Security Module for Transforming Conventional Inverters toward Firmware Security-Enhanced Smart Inverters. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1307–1312.
As the traditional inverters are transforming toward more intelligent inverters with advanced information and communication technologies, the cyber-attack surface has been remarkably expanded. Specifically, securing firmware of smart inverters from cyber-attacks is crucial. This paper provides expanded firmware attack surface targeting smart inverters. Moreover, this paper proposes a security module for transforming a conventional inverter to a firmware security built-in smart inverter by preventing potential malware and unauthorized firmware update attacks as well as fast automated inverter recovery from zero-day attacks. Furthermore, the proposed security module as a client of blockchain is connected to blockchain severs to fully utilize blockchain technologies such as membership service, ledgers, and smart contracts to detect and mitigate the firmware attacks. The proposed security module framework is implemented in an Internet-of-Thing (IoT) device and validated by experiments.
2019-06-24
Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.