Visible to the public Biblio

Filters: Keyword is electricity grid  [Clear All Filters]
2020-09-08
Chen, Yu-Cheng, Mooney, Vincent, Grijalva, Santiago.  2019.  A Survey of Attack Models for Cyber-Physical Security Assessment in Electricity Grid. 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC). :242–243.
This paper surveys some prior work regarding attack models in a cyber-physical system and discusses the potential benefits. For comparison, the full paper will model a bad data injection attack scenario in power grid using the surveyed prior work.
Chen, Yu-Cheng, Gieseking, Tim, Campbell, Dustin, Mooney, Vincent, Grijalva, Santiago.  2019.  A Hybrid Attack Model for Cyber-Physical Security Assessment in Electricity Grid. 2019 IEEE Texas Power and Energy Conference (TPEC). :1–6.
A detailed model of an attack on the power grid involves both a preparation stage as well as an execution stage of the attack. This paper introduces a novel Hybrid Attack Model (HAM) that combines Probabilistic Learning Attacker, Dynamic Defender (PLADD) model and a Markov Chain model to simulate the planning and execution stages of a bad data injection attack in power grid. We discuss the advantages and limitations of the prior work models and of our proposed Hybrid Attack Model and show that HAM is more effective compared to individual PLADD or Markov Chain models.
2020-02-10
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
2019-06-24
Wang, J., Zhang, X., Zhang, H., Lin, H., Tode, H., Pan, M., Han, Z..  2018.  Data-Driven Optimization for Utility Providers with Differential Privacy of Users' Energy Profile. 2018 IEEE Global Communications Conference (GLOBECOM). :1–6.

Smart meters migrate conventional electricity grid into digitally enabled Smart Grid (SG), which is more reliable and efficient. Fine-grained energy consumption data collected by smart meters helps utility providers accurately predict users' demands and significantly reduce power generation cost, while it imposes severe privacy risks on consumers and may discourage them from using those “espionage meters". To enjoy the benefits of smart meter measured data without compromising the users' privacy, in this paper, we try to integrate distributed differential privacy (DDP) techniques into data-driven optimization, and propose a novel scheme that not only minimizes the cost for utility providers but also preserves the DDP of users' energy profiles. Briefly, we add differential private noises to the users' energy consumption data before the smart meters send it to the utility provider. Due to the uncertainty of the users' demand distribution, the utility provider aggregates a given set of historical users' differentially private data, estimates the users' demands, and formulates the data- driven cost minimization based on the collected noisy data. We also develop algorithms for feasible solutions, and verify the effectiveness of the proposed scheme through simulations using the simulated energy consumption data generated from the utility company's real data analysis.