Visible to the public Biblio

Filters: Keyword is secure data aggregation  [Clear All Filters]
2023-01-13
Praveen Kumar, K., Sree Ranganayaki, V..  2022.  Energy Saving Using Privacy Data Secure Aggregation Algorithm. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :99—102.
For the Internet of things (IoT) secure data aggregation issues, data privacy-preserving and limited computation ability and energy of nodes should be tradeoff. Based on analyzing the pros-and-cons of current works, a low energy- consuming secure data aggregation method (LCSDA) was proposed. This method uses shortest path principle to choose neighbor nodes and generates the data aggregation paths in the cluster based on prim minimum spanning tree algorithm. Simulation results show that this method could effectively cut down energy consumption and reduce the probability of cluster head node being captured, in the same time preserving data privacy.
2019-06-24
Okay, F. Y., Ozdemir, S..  2018.  A secure data aggregation protocol for fog computing based smart grids. 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018). :1–6.

In Smart Grids (SGs), data aggregation process is essential in terms of limiting packet size, data transmission amount and data storage requirements. This paper presents a novel Domingo-Ferrer additive privacy based Secure Data Aggregation (SDA) scheme for Fog Computing based SGs (FCSG). The proposed protocol achieves end-to-end confidentiality while ensuring low communication and storage overhead. Data aggregation is performed at fog layer to reduce the amount of data to be processed and stored at cloud servers. As a result, the proposed protocol achieves better response time and less computational overhead compared to existing solutions. Moreover, due to hierarchical architecture of FCSG and additive homomorphic encryption consumer privacy is protected from third parties. Theoretical analysis evaluates the effects of packet size and number of packets on transmission overhead and the amount of data stored in cloud server. In parallel with the theoretical analysis, our performance evaluation results show that there is a significant improvement in terms of data transmission and storage efficiency. Moreover, security analysis proves that the proposed scheme successfully ensures the privacy of collected data.