Visible to the public Biblio

Filters: Keyword is acceptance trees  [Clear All Filters]
2019-07-01
Ferreyra, N. E. Díaz, Meisy, R., Heiselz, M..  2018.  At Your Own Risk: Shaping Privacy Heuristics for Online Self-Disclosure. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-10.

Revealing private and sensitive information on Social Network Sites (SNSs) like Facebook is a common practice which sometimes results in unwanted incidents for the users. One approach for helping users to avoid regrettable scenarios is through awareness mechanisms which inform a priori about the potential privacy risks of a self-disclosure act. Privacy heuristics are instruments which describe recurrent regrettable scenarios and can support the generation of privacy awareness. One important component of a heuristic is the group of people who should not access specific private information under a certain privacy risk. However, specifying an exhaustive list of unwanted recipients for a given regrettable scenario can be a tedious task which necessarily demands the user's intervention. In this paper, we introduce an approach based on decision trees to instantiate the audience component of privacy heuristics with minor intervention from the users. We introduce Disclosure- Acceptance Trees, a data structure representative of the audience component of a heuristic and describe a method for their generation out of user-centred privacy preferences.