Biblio
The paper presents an example Sensor-cloud architecture that integrates security as its native ingredient. It is based on the multi-layer client-server model with separation of physical and virtual instances of sensors, gateways, application servers and data storage. It proposes the application of virtualised sensor nodes as a prerequisite for increasing security, privacy, reliability and data protection. All main concerns in Sensor-Cloud security are addressed: from secure association, authentication and authorization to privacy and data integrity and protection. The main concept is that securing the virtual instances is easier to implement, manage and audit and the only bottleneck is the physical interaction between real sensor and its virtual reflection.
Information Centric Networking (ICN) paradigms nicely fit the world of wireless sensors, whose devices have tight constraints. In this poster, we compare two alternative designs for secure association of new IoT devices in existing ICN deployments, which are based on asymmetric and symmetric cryptography respectively. While the security properties of both approaches are equivalent, an interesting trade-off arises between properties of the protocol vs properties of its implementation in current IoT boards. Indeed, while the asymmetric-keys based approach incurs a lower traffic overhead (of about 30%), we find that its implementation is significantly more energy- and time-consuming due to the cost of cryptographic operations (it requires up to 41x more energy and 8x more time).
A secure device identifier (DevID) is cryptographically bound to a device and supports authentication of the devices identity. Locally significant identities can be securely associated with an initial manufacturer-provisioned DevID and used in provisioning and authentication protocols toallow a network administrator to establish the trustworthiness of a device and select appropriate policies for transmission and reception of data and control protocols to and from the device.