Visible to the public Biblio

Filters: Keyword is near-field communication  [Clear All Filters]
2020-09-08
Isnan Imran, Muh. Ikhdar, Putrada, Aji Gautama, Abdurohman, Maman.  2019.  Detection of Near Field Communication (NFC) Relay Attack Anomalies in Electronic Payment Cases using Markov Chain. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1–4.
Near Field Communication (NFC) is a short- range wireless communication technology that supports several features, one of which is an electronic payment. NFC works at a limited distance to exchange information. In terms of security, NFC technology has a gap for attackers to carry out attacks by forwarding information illegally using the target NFC network. A relay attack that occurs due to the theft of some data by an attacker by utilizing close communication from NFC is one of them. Relay attacks can cause a lot of loss in terms of material sacrifice. It takes countermeasures to overcome the problem of electronic payments with NFC technology. Detection of anomalous data is one way that can be done. In an attack, several abnormalities can be detected which can be used to prevent an attack. Markov Chain is one method that can be used to detect relay attacks that occur in electronic payments using NFC. The result shows Markov chain can detect anomalies in relay attacks in the case of electronic payment.
2018-02-15
Hufstetler, W. A., Ramos, M. J. H., Wang, S..  2017.  NFC Unlock: Secure Two-Factor Computer Authentication Using NFC. 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :507–510.

Our project, NFC Unlock, implements a secure multifactor authentication system for computers using Near Field Communication technology. The application is written in C\# with pGina. It implements an NFC authentication which replaces the standard Windows credentials to allow the use of an NFC tag and a passcode to authenticate the user. Unlike the most prevalent multifactor authentication methods, NFC authentication does not require a user wait for an SMS code to type into the computer. A user enters a passcode and scans the NFC tag to log in. In order to prevent the data from being hacked, the system encrypts the NFC tag ID and the passcode with Advanced Encryption Standard. Users can easily register an NFC tag and link it to their computer account. The program also has several extra features including text alerts, record keeping of all login and login attempts, and a user-friendly configuration menu. Initial tests show that the NFC-based multifactor authentication system has the advantage of improved security with a simplified login process.

2015-05-01
Akram, R.N., Markantonakis, K., Mayes, K..  2014.  Trusted Platform Module for Smart Cards. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Near Field Communication (NFC)-based mobile phone services offer a lifeline to the under-appreciated multiapplication smart card initiative. The initiative could effectively replace heavy wallets full of smart cards for mundane tasks. However, the issue of the deployment model still lingers on. Possible approaches include, but are not restricted to, the User Centric Smart card Ownership Model (UCOM), GlobalPlatform Consumer Centric Model, and Trusted Service Manager (TSM). In addition, multiapplication smart card architecture can be a GlobalPlatform Trusted Execution Environment (TEE) and/or User Centric Tamper-Resistant Device (UCTD), which provide cross-device security and privacy preservation platforms to their users. In the multiapplication smart card environment, there might not be a prior off-card trusted relationship between a smart card and an application provider. Therefore, as a possible solution to overcome the absence of prior trusted relationships, this paper proposes the concept of Trusted Platform Module (TPM) for smart cards (embedded devices) that can act as a point of reference for establishing the necessary trust between the device and an application provider, and among applications.