Visible to the public Biblio

Filters: Keyword is zero trust model  [Clear All Filters]
2021-03-04
Patil, A. P., Karkal, G., Wadhwa, J., Sawood, M., Reddy, K. Dhanush.  2020.  Design and Implementation of a Consensus Algorithm to build Zero Trust Model. 2020 IEEE 17th India Council International Conference (INDICON). :1—5.

Zero Trust Model ensures each node is responsible for the approval of the transaction before it gets committed. The data owners can track their data while it’s shared amongst the various data custodians ensuring data security. The consensus algorithm enables the users to trust the network as malicious nodes fail to get approval from all nodes, thereby causing the transaction to be aborted. The use case chosen to demonstrate the proposed consensus algorithm is the college placement system. The algorithm has been extended to implement a diversified, decentralized, automated placement system, wherein the data owner i.e. the student, maintains an immutable certificate vault and the student’s data has been validated by a verifier network i.e. the academic department and placement department. The data transfer from student to companies is recorded as transactions in the distributed ledger or blockchain allowing the data to be tracked by the student.

2019-08-05
Tao, Y., Lei, Z., Ruxiang, P..  2018.  Fine-Grained Big Data Security Method Based on Zero Trust Model. 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). :1040-1045.

With the rapid development of big data technology, the requirement of data processing capacity and efficiency result in failure of a number of legacy security technologies, especially in the data security domain. Data security risks became extremely important for big data usage. We introduced a novel method to preform big data security control, which comprises three steps, namely, user context recognition based on zero trust, fine-grained data access authentication control, and data access audit based on full network traffic to recognize and intercept risky data access in big data environment. Experiments conducted on the fine-grained big data security method based on the zero trust model of drug-related information analysis system demonstrated that this method can identify the majority of data security risks.