Visible to the public Biblio

Filters: Keyword is deep learning algorithm  [Clear All Filters]
2022-07-05
Parizad, Ali, Hatziadoniu, Constantine.  2021.  Semi-Supervised False Data Detection Using Gated Recurrent Units and Threshold Scoring Algorithm. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
In recent years, cyber attackers are targeting the power system and imposing different damages to the national economy and public safety. False Data Injection Attack (FDIA) is one of the main types of Cyber-Physical attacks that adversaries can manipulate power system measurements and modify system data. Consequently, it may result in incorrect decision-making and control operations and lead to devastating effects. In this paper, we propose a two-stage detection method. In the first step, Gated Recurrent Unit (GRU), as a deep learning algorithm, is employed to forecast the data for the future horizon. Meanwhile, hyperparameter optimization is implemented to find the optimum parameters (i.e., number of layers, epoch, batch size, β1, β2, etc.) in the supervised learning process. In the second step, an unsupervised scoring algorithm is employed to find the sequences of false data. Furthermore, two penalty factors are defined to prevent the objective function from greedy behavior. We assess the capability of the proposed false data detection method through simulation studies on a real-world data set (ComEd. dataset, Northern Illinois, USA). The results demonstrate that the proposed method can detect different types of attacks, i.e., scaling, simple ramp, professional ramp, and random attacks, with good performance metrics (i.e., recall, precision, F1 Score). Furthermore, the proposed deep learning method can mitigate false data with the estimated true values.
2020-08-10
Wasi, Sarwar, Shams, Sarmad, Nasim, Shahzad, Shafiq, Arham.  2019.  Intrusion Detection Using Deep Learning and Statistical Data Analysis. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1–5.
Innovation and creativity have played an important role in the development of every field of life, relatively less but it has created several problems too. Intrusion detection is one of those problems which became difficult with the advancement in computer networks, multiple researchers with multiple techniques have come forward to solve this crucial issue, but network security is still a challenge. In our research, we have come across an idea to detect intrusion using a deep learning algorithm in combination with statistical data analysis of KDD cup 99 datasets. Firstly, we have applied statistical analysis on the given data set to generate a simplified form of data, so that a less complex binary classification model of artificial neural network could apply for data classification. Our system has decreased the complexity of the system and has improved the response time.
2020-02-10
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
2019-09-05
Sun, Y., Zhang, L., Zhao, C..  2018.  A Study of Network Covert Channel Detection Based on Deep Learning. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :637-641.

Information security has become a growing concern. Computer covert channel which is regarded as an important area of information security research gets more attention. In order to detect these covert channels, a variety of detection algorithms are proposed in the course of the research. The algorithms of machine learning type show better results in these detection algorithms. However, the common machine learning algorithms have many problems in the testing process and have great limitations. Based on the deep learning algorithm, this paper proposes a new idea of network covert channel detection and forms a new detection model. On the one hand, this algorithmic model can detect more complex covert channels and, on the other hand, greatly improve the accuracy of detection due to the use of a new deep learning model. By optimizing this test model, we can get better results on the evaluation index.