Visible to the public Biblio

Filters: Keyword is memory storage  [Clear All Filters]
2020-10-05
Rafati, Jacob, DeGuchy, Omar, Marcia, Roummel F..  2018.  Trust-Region Minimization Algorithm for Training Responses (TRMinATR): The Rise of Machine Learning Techniques. 2018 26th European Signal Processing Conference (EUSIPCO). :2015—2019.

Deep learning is a highly effective machine learning technique for large-scale problems. The optimization of nonconvex functions in deep learning literature is typically restricted to the class of first-order algorithms. These methods rely on gradient information because of the computational complexity associated with the second derivative Hessian matrix inversion and the memory storage required in large scale data problems. The reward for using second derivative information is that the methods can result in improved convergence properties for problems typically found in a non-convex setting such as saddle points and local minima. In this paper we introduce TRMinATR - an algorithm based on the limited memory BFGS quasi-Newton method using trust region - as an alternative to gradient descent methods. TRMinATR bridges the disparity between first order methods and second order methods by continuing to use gradient information to calculate Hessian approximations. We provide empirical results on the classification task of the MNIST dataset and show robust convergence with preferred generalization characteristics.

2020-02-17
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
2019-09-05
Nasseralfoghara, M., Hamidi, H..  2019.  Web Covert Timing Channels Detection Based on Entropy. 2019 5th International Conference on Web Research (ICWR). :12-15.

Todays analyzing web weaknesses and vulnerabilities in order to find security attacks has become more urgent. In case there is a communication contrary to the system security policies, a covert channel has been created. The attacker can easily disclosure information from the victim's system with just one public access permission. Covert timing channels, unlike covert storage channels, do not have memory storage and they draw less attention. Different methods have been proposed for their identification, which generally benefit from the shape of traffic and the channel's regularity. In this article, an entropy-based detection method is designed and implemented. The attacker can adjust the amount of channel entropy by controlling measures such as changing the channel's level or creating noise on the channel to protect from the analyst's detection. As a result, the entropy threshold is not always constant for detection. By comparing the entropy from different levels of the channel and the analyst, we conclude that the analyst must investigate traffic at all possible levels.