Visible to the public Biblio

Filters: Keyword is simulation results  [Clear All Filters]
2019-11-27
Sun, Xiaoli, Yang, Weiwei, Cai, Yueming, Tao, Liwei, Cai, Chunxiao.  2018.  Physical Layer Security in Wireless Information and Power Transfer Millimeter Wave Systems. 2018 24th Asia-Pacific Conference on Communications (APCC). :83–87.

This paper studies the physical layer security performance of a Simultaneous Wireless Information and Power Transfer (SWIPT) millimeter wave (mmWave) ultra-dense network under a stochastic geometry framework. Specifically, we first derive the energy-information coverage probability and secrecy probability in the considered system under time switching policies. Then the effective secrecy throughput (EST) which can characterize the trade-off between the energy coverage, secure and reliable transmission performance is derived. Theoretical analyses and simulation results reveal the design insights into the effects of various network parameters like, transmit power, time switching factor, transmission rate, confidential information rate, etc, on the secrecy performance. Specifically, it is impossible to realize the effective secrecy throughput improvement just by increasing the transmit power.

2019-09-05
Panfili, M., Giuseppi, A., Fiaschetti, A., Al-Jibreen, H. B., Pietrabissa, A., Priscoli, F. Delli.  2018.  A Game-Theoretical Approach to Cyber-Security of Critical Infrastructures Based on Multi-Agent Reinforcement Learning. 2018 26th Mediterranean Conference on Control and Automation (MED). :460-465.

This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.