Biblio
This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.
ISSN: 2831-753X
Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.
With the arrival of several face-swapping applications such as FaceApp, SnapChat, MixBooth, FaceBlender and many more, the authenticity of digital media content is hanging on a very loose thread. On social media platforms, videos are widely circulated often at a high compression factor. In this work, we analyze several deep learning approaches in the context of deepfakes classification in high compression scenarios and demonstrate that a proposed approach based on metric learning can be very effective in performing such a classification. Using less number of frames per video to assess its realism, the metric learning approach using a triplet network architecture proves to be fruitful. It learns to enhance the feature space distance between the cluster of real and fake videos embedding vectors. We validated our approaches on two datasets to analyze the behavior in different environments. We achieved a state-of-the-art AUC score of 99.2% on the Celeb-DF dataset and accuracy of 90.71% on a highly compressed Neural Texture dataset. Our approach is especially helpful on social media platforms where data compression is inevitable.