Visible to the public Biblio

Filters: Keyword is quantum communication  [Clear All Filters]
2021-08-31
Tang, Zefan, Qin, Yanyuan, Jiang, Zimin, Krawec, Walter O., Zhang, Peng.  2020.  Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
2021-02-23
Djordjevic, I. B..  2020.  Surface Codes Based Quantum Networking. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—5.
We propose a multipartite quantum communication network (QCN) based on surface codes (SCs). We describe how simultaneously to entangle multiple nodes in an arbitrary network topology by employing the SCs. We further describe how to extend the transmission distance between arbitrary two nodes by using the SCs as well. Finally, we describe how to operate the proposed QCN by employing the SDN concept.
2020-12-15
Boche, H., Cai, M., Wiese, M., Deppe, C., Ferrara, R..  2020.  Semantic Security for Quantum Wiretap Channels. 2020 IEEE International Symposium on Information Theory (ISIT). :1990—1995.

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

2020-11-20
Lardier, W., Varo, Q., Yan, J..  2019.  Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
2020-07-20
Marakis, Evangelos, van Harten, Wouter, Uppu, Ravitej, Vos, Willem L., Pinkse, Pepijn W. H..  2017.  Reproducibility of artificial multiple scattering media. 2017 Conference on Lasers and Electro-Optics Europe European Quantum Electronics Conference (CLEO/Europe-EQEC). :1–1.
Summary form only given. Authentication of people or objects using physical keys is insecure against secret duplication. Physical unclonable functions (PUF) are special physical keys that are assumed to be unclonable due to the large number of degrees of freedom in their manufacturing [1]. Opaque scattering media, such as white paint and teeth, comprise of millions of nanoparticles in a random arrangement. Under coherent light illumination, the multiple scattering from these nanoparticles gives rise to a complex interference resulting in a speckle pattern. The speckle pattern is seemingly random but highly sensitive to the exact position and size of the nanoparticles in the given piece of opaque scattering medium [2], thereby realizing an ideal optical PUF. These optical PUFs enabled applications such as quantum-secure authentication (QSA) and communication [3, 4].
2020-06-02
Gagliano, Allison, Krawec, Walter O., Iqbal, Hasan.  2019.  From Classical to Semi-Quantum Secure Communication. 2019 IEEE International Symposium on Information Theory (ISIT). :1707—1711.

In this work we introduce a novel QKD protocol capable of smoothly transitioning, via a user-tuneable parameter, from classical to semi-quantum in order to help understand the effect of quantum communication resources on secure key distribution. We perform an information theoretic security analysis of this protocol to determine what level of "quantumness" is sufficient to achieve security, and we discover some rather interesting properties of this protocol along the way.

2020-03-30
Diamanti, Eleni.  2019.  Demonstrating Quantum Advantage in Security and Efficiency with Practical Photonic Systems. 2019 21st International Conference on Transparent Optical Networks (ICTON). :1–2.
We discuss the current landscape in quantum communication and cryptography, and focus in particular on recent photonic implementations, using encoding in discrete or continuous properties of light, of central quantum network protocols, enabling secret key distribution, verification of entangled resources and transactions of quantum money, with maximal security guarantees. We also describe current challenges in this field and our efforts towards the miniaturization of the developed photonic systems, their integration into telecommunication network infrastructures, including with satellite links, as well as the practical demonstration of novel protocols featuring a quantum advantage in communication efficiency for a wide range of useful tasks in a network environment. These advances enrich the resources and applications of the emerging quantum networks that will play a central role in the context of future quantum-safe communications.
2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2019-09-11
Wang, L., Wang, D., Gao, J., Huo, C., Bai, H., Yuan, J..  2019.  Research on Multi-Source Data Security Protection of Smart Grid Based on Quantum Key Combination. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :449–453.

Power communication network is an important infrastructure of power system. For a large number of widely distributed business terminals and communication terminals. The data protection is related to the safe and stable operation of the whole power grid. How to solve the problem that lots of nodes need a large number of keys and avoid the situation that these nodes cannot exchange information safely because of the lack of keys. In order to solve the problem, this paper proposed a segmentation and combination technology based on quantum key to extend the limited key. The basic idea was to obtain a division scheme according to different conditions, and divide a key into several different sub-keys, and then combine these key segments to generate new keys and distribute them to different terminals in the system. Sufficient keys were beneficial to key updating, and could effectively enhance the ability of communication system to resist damage and intrusion. Through the analysis and calculation, the validity of this method in the use of limited quantum keys to achieve the business data secure transmission of a large number of terminal was further verified.