Biblio
H.264/advanced video coding surveillance video encoders use the Skip mode specified by the standard to reduce bandwidth. They also use multiple frames as reference for motion-compensated prediction. In this paper, we propose two techniques to reduce the bandwidth and computational cost of static camera surveillance video encoders without affecting detection and recognition performance. A spatial sampler is proposed to sample pixels that are segmented using a Gaussian mixture model. Modified weight updates are derived for the parameters of the mixture model to reduce floating point computations. A storage pattern of the parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. The second contribution is a low computational cost algorithm to choose the reference frames. The proposed reference frame selection algorithm reduces the cost of coding uncovered background regions. We also study the number of reference frames required to achieve good coding efficiency. Distortion over foreground pixels is measured to quantify the performance of the proposed techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence.
The video surveillance widely installed in public areas poses a significant threat to the privacy. This paper proposes a new privacy preserving method via the Generalized Random-Grid based Visual Cryptography Scheme (GRG-based VCS). We first separate the foreground from the background for each video frame. These foreground pixels contain the most important information that needs to be protected. Every foreground area is encrypted into two shares based on GRG-based VCS. One share is taken as the foreground, and the other one is embedded into another frame with random selection. The content of foreground can only be recovered when these two shares are got together. The performance evaluation on several surveillance scenarios demonstrates that our proposed method can effectively protect sensitive privacy information in surveillance videos.