Biblio
Most searchable attribute-based encryption schemes only support the search for single-keyword without attribute revocation, the data user cannot quickly detect the validity of the ciphertext returned by the cloud service provider. Therefore, this paper proposes an authorization of searchable CP-ABE scheme with attribute revocation and applies the scheme to the cloud computing environment. The data user to send the authorization information to the authorization server for authorization, assists the data user to effectively detect the ciphertext information returned by the cloud service provider while supporting the revocation of the user attribute in a fine-grained access control structure without updating the key during revocation stage. In the random oracle model based on the calculation of Diffie-Hellman problem, it is proved that the scheme can satisfy the indistinguishability of ciphertext and search trapdoor. Finally, the performance analysis shows that the scheme has higher computational efficiency.
Searchable encryption server protects privacal data of data owner from leaks. This paper analyzes the security of a multi-user searchable encryption scheme and points out that this scheme does not satisfy the invisibility of trapdoors. In order to improve the security of the original scheme, this paper proposes a probably secure multi-user multi-keyword searchable encryption scheme. New secheme not only ensures the confidentiality of the cipher text keyword, but also does not increase the encryption workload of the data owner when the new data user joins. In the random oracle model, based on the hard problem of decisional Diffie-Hellman, it is proved that the scheme has trapdoor indistinguishability. In the end, obtained by the simulation program to achieve a new computationally efficient communication at low cost.