Visible to the public Biblio

Filters: Keyword is Cloud-Security  [Clear All Filters]
2020-11-04
Torkura, K. A., Sukmana, M. I. H., Strauss, T., Graupner, H., Cheng, F., Meinel, C..  2018.  CSBAuditor: Proactive Security Risk Analysis for Cloud Storage Broker Systems. 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). :1—10.

Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CS-BAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating BrokerMonkey, a component that continuously injects failure into our reference CSB system, CloudRAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by BrokerMonkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %.

2020-08-24
Torkura, Kennedy A., Sukmana, Muhammad I.H., Cheng, Feng, Meinel, Christoph.  2019.  SlingShot - Automated Threat Detection and Incident Response in Multi Cloud Storage Systems. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–5.
Cyber-attacks against cloud storage infrastructure e.g. Amazon S3 and Google Cloud Storage, have increased in recent years. One reason for this development is the rising adoption of cloud storage for various purposes. Robust counter-measures are therefore required to tackle these attacks especially as traditional techniques are not appropriate for the evolving attacks. We propose a two-pronged approach to address these challenges in this paper. The first approach involves dynamic snapshotting and recovery strategies to detect and partially neutralize security events. The second approach builds on the initial step by automatically correlating the generated alerts with cloud event log, to extract actionable intelligence for incident response. Thus, malicious activities are investigated, identified and eliminated. This approach is implemented in SlingShot, a cloud threat detection and incident response system which extends our earlier work - CSBAuditor, which implements the first step. The proposed techniques work together in near real time to mitigate the aforementioned security issues on Amazon Web Services (AWS) and Google Cloud Platform (GCP). We evaluated our techniques using real cloud attacks implemented with static and dynamic methods. The average Mean Time to Detect is 30 seconds for both providers, while the Mean Time to Respond is 25 minutes and 90 minutes for AWS and GCP respectively. Thus, our proposal effectively tackles contemporary cloud attacks.
2020-07-27
Torkura, Kennedy A., Sukmana, Muhammad I.H., Cheng, Feng, Meinel, Christoph.  2019.  Security Chaos Engineering for Cloud Services: Work In Progress. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1–3.
The majority of security breaches in cloud infrastructure in recent years are caused by human errors and misconfigured resources. Novel security models are imperative to overcome these issues. Such models must be customer-centric, continuous, not focused on traditional security paradigms like intrusion detection and adopt proactive techniques. Thus, this paper proposes CloudStrike, a cloud security system that implements the principles of Chaos Engineering to enable the aforementioned properties. Chaos Engineering is an emerging discipline employed to prevent non-security failures in cloud infrastructure via Fault Injection Testing techniques. CloudStrike employs similar techniques with a focus on injecting failures that impact security i.e. integrity, confidentiality and availability. Essentially, CloudStrike leverages the relationship between dependability and security models. Preliminary experiments provide insightful and prospective results.
2019-09-26
Torkura, K. A., Sukmana, M. I. H., Meinig, M., Cheng, F., Meinel, C., Graupner, H..  2018.  A Threat Modeling Approach for Cloud Storage Brokerage and File Sharing Systems. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1-5.

Cloud storage brokerage systems abstract cloud storage complexities by mediating technical and business relationships between cloud stakeholders, while providing value-added services. This however raises security challenges pertaining to the integration of disparate components with sometimes conflicting security policies and architectural complexities. Assessing the security risks of these challenges is therefore important for Cloud Storage Brokers (CSBs). In this paper, we present a threat modeling schema to analyze and identify threats and risks in cloud brokerage brokerage systems. Our threat modeling schema works by generating attack trees, attack graphs, and data flow diagrams that represent the interconnections between identified security risks. Our proof-of-concept implementation employs the Common Configuration Scoring System (CCSS) to support the threat modeling schema, since current schemes lack sufficient security metrics which are imperatives for comprehensive risk assessments. We demonstrate the efficiency of our proposal by devising CCSS base scores for two attacks commonly launched against cloud storage systems: Cloud sStorage Enumeration Attack and Cloud Storage Exploitation Attack. These metrics are then combined with CVSS based metrics to assign probabilities in an Attack Tree. Thus, we show the possibility combining CVSS and CCSS for comprehensive threat modeling, and also show that our schemas can be used to improve cloud security.