Biblio
We present the IT solution for remote modeling of cryptographic protocols and other cryptographic primitives and a number of education-oriented capabilities based on them. These capabilities are provided at the Department of Mathematical Modeling using the MPEI algebraic processor, and allow remote participants to create automata models of cryptographic protocols, use and manage them in the modeling process. Particular attention is paid to the IT solution for modeling of the private communication and key distribution using the processor combined with the Kerberos protocol. This allows simulation and studying of key distribution protocols functionality on remote computers via the Internet. The importance of studying cryptographic primitives for future IT specialists is emphasized.
Cloud computing offers many advantages as flexibility or resource efficiency and can significantly reduce costs. However, when sensitive data is outsourced to a cloud provider, classified records can leak. To protect data owners and application providers from a privacy breach data must be encrypted before it is uploaded. In this work, we present a distributed key management scheme that handles user-specific keys in a single-tenant scenario. The underlying database is encrypted and the secret key is split into parts and only reconstructed temporarily in memory. Our scheme distributes shares of the key to the different entities. We address bootstrapping, key recovery, the adversary model and the resulting security guarantees.
Security issues in vehicular communication have become a huge concern to safeguard increasing applications. A group signature is one of the popular authentication approaches for VANETs (Vehicular ad hoc networks) which can be implemented to secure the vehicular communication. However, securely distributing group keys to fast-moving vehicular nodes is still a challenging problem. In this paper, we propose an efficient key management protocol for group signature based authentication, where a group is extended to a domain with multiple road side units. Our scheme not only provides a secure way to deliver group keys to vehicular nodes, but also ensures security features. The experiment results show that our key distribution scheme is a scalable, efficient and secure solution to vehicular networking.
Randomness is a vital resource for modern-day information processing, especially for cryptography. A wide range of applications critically rely on abundant, high-quality random numbers generated securely. Here, we show how to expand a random seed at an exponential rate without trusting the underlying quantum devices. Our approach is secure against the most general adversaries, and has the following new features: cryptographic level of security, tolerating a constant level of imprecision in devices, requiring only unit size quantum memory (for each device component) in an honest implementation, and allowing a large natural class of constructions for the protocol. In conjunction with a recent work by Chung et al. [2014], it also leads to robust unbounded expansion using just 2 multipart devices. When adapted for distributing cryptographic keys, our method achieves, for the first time, exponential expansion combined with cryptographic security and noise tolerance. The proof proceeds by showing that the Rényi divergence of the outputs of the protocol (for a specific bounding operator) decreases linearly as the protocol iterates. At the heart of the proof are a new uncertainty principle on quantum measurements and a method for simulating trusted measurements with untrusted devices.
Unmanned Aerial Systems (UAS) have raised a great concern on privacy recently. A practical method to protect privacy is needed for adopting UAS in civilian airspace. This paper examines the privacy policies, filtering strategies, existing techniques, then proposes a novel method based on the encrypted video stream and the cloud-based privacy servers. In this scheme, all video surveillance images are initially encrypted, then delivered to a privacy server. The privacy server decrypts the video using the shared key with the camera, and filters the image according to the privacy policy specified for the surveyed region. The sanitized video is delivered to the surveillance operator or anyone on the Internet who is authorized. In a larger system composed of multiple cameras and multiple privacy servers, the keys can be distributed using Kerberos protocol. With this method the privacy policy can be changed on demand in real-time and there is no need for a costly on-board processing unit. By utilizing the cloud-based servers, advanced image processing algorithms and new filtering algorithms can be applied immediately without upgrading the camera software. This method is cost-efficient and promotes video sharing among multiple subscribers, thus it can spur wide adoption.