Visible to the public Biblio

Filters: Keyword is Magnetostriction  [Clear All Filters]
2021-11-29
Nicoloiu, A., Nastase, C., Zdru, I., Vasilache, D., Boldeiu, G., Ciornei, M. C., Dinescu, A., Muller, A..  2021.  Novel ScAlN/Si SAW-type devices targeting surface acoustic wave/spin wave coupling. 2021 International Semiconductor Conference (CAS). :67–70.
This paper reports high frequency surface acoustic wave (SAW) devices developed on Sc doped (30%) AlN on high resistivity Si for demonstrating surface acoustic wave – spin wave coupling. Enhanced Q-factors were found for both propagation modes – Rayleigh (4.7 GHz) and Sezawa (8 GHz). SAW/SW (spin wave) coupling is proven for two-ports SAW structures having a magnetostrictive layer of Ni between the two interdigitated transducers (IDTs). A decrease of 3.42 dB was observed in the amplitude of the transmission parameter, at resonance, when the magnetic field was applied. The angle between the applied magnetic field and the SAW propagation direction is π/4.
2019-09-30
Onufer, J., Ziman, J., Duranka, P., Kravčák, J..  2019.  The Study of Closure Domain Structure Dynamics in Bistable Microwires Using the Technique of Three-Level Field Pulses. IEEE Transactions on Magnetics. 55:1–6.

The process of release of a single domain wall from the closure domain structure at the microwire ends and the process of nucleation of the reversed domain in regions far from the microwire ends were studied using the technique that consists in determining the critical parameters of the rectangular magnetic field pulse (magnitude-Hpc and length-τc) needed for free domain wall production. Since these processes can be influenced by the magnitude of the magnetic field before or after the application of the field pulse (Hi, τ), we propose a modified experiment in which the so-called three-level pulse is used. The three-level pulse starts from the first level, then continues with the second measuring rectangular pulse (Hi, τ), which ends at the third field level. Based on the results obtained in experiments using three-level field pulses, it has been shown that reversed domains are not present in the remanent state in regions far from the microwire ends. Some modification of the theoretical model of a single domain wall trapped in a potential well will be needed for an adequate description of the depinning processes.