Biblio
This work describes a top down systems security requirements analysis approach for understanding and eliciting security requirements for a notional small unmanned aerial system (SUAS). More specifically, the System-Theoretic Process Analysis approach for Security (STPA-Sec) is used to understand and elicit systems security requirements. The effort employs STPA-Sec on a notional SUAS system case study to detail the development of functional-level security requirements, design-level engineering considerations, and architectural-level security specification criteria early in the system life cycle when the solution trade-space is largest rather than merely examining components and adding protections during system operation or sustainment. These details were elaborated during a semester independent study research effort by two United States Air Force Academy Systems Engineering cadets, guided by their instructor and a series of working group sessions with UAS operators and subject matter experts. This work provides insight into a viable systems security requirements analysis approach which results in traceable security, safety, and resiliency requirements that can be designed-for, built-to, and verified with confidence.
The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.