Visible to the public Biblio

Filters: Keyword is traceable security  [Clear All Filters]
2020-11-16
Mailloux, L. O., Span, M., Mills, R. F., Young, W..  2019.  A Top Down Approach for Eliciting Systems Security Requirements for a Notional Autonomous Space System. 2019 IEEE International Systems Conference (SysCon). :1–7.
Today's highly interconnected and technology reliant environment places great emphasis on the need for secure cyber-physical systems. This work addresses this need by detailing a top down systems security requirements analysis approach for understanding and eliciting security requirements for a notional space system. More specifically, the System-Theoretic Process Analysis approach for Security (STPA-Sec) is used to understand and elicit systems security requirements during the conceptual stage of development. This work employs STPA-Sec in a notional space system to detail the development of functional-level security requirements, design-level engineering considerations, and architectural-level security specifications early in the system life cycle when the solution trade-space is largest rather than merely examining components and adding protections during system operation, maintenance, or sustainment. Lastly, this approach employs a holistic viewpoint which aligns with the systems and software engineering processes as detailed in ISO/IEC/IEEE 152SS and NIST SP SOO-160 Volume 1. This work seeks to advance the science of systems security by providing insight into a viable systems security requirements analysis approach which results in traceable security, safety, and resiliency requirements that can be designed-for, built-to, and verified with confidence.
2019-10-02
Span, M. T., Mailloux, L. O., Grimaila, M. R., Young, W. B..  2018.  A Systems Security Approach for Requirements Analysis of Complex Cyber-Physical Systems. 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Today's highly interconnected and technology reliant environment places greater emphasis on the need for dependably secure systems. This work addresses this problem by detailing a systems security analysis approach for understanding and eliciting security requirements for complex cyber-physical systems. First, a readily understandable description of key architectural analysis definitions and desirable characteristics is provided along with a survey of commonly used security architecture analysis approaches. Next, a tailored version of the System-Theoretic Process Analysis approach for Security (STPA-Sec) is detailed in three phases which supports the development of functional-level security requirements, architectural-level engineering considerations, and design-level security criteria. In particular, these three phases are aligned with the systems and software engineering processes defined in the security processes of NIST SP 800-160. Lastly, this work is important for advancing the science of systems security by providing a viable systems security analysis approach for eliciting, defining, and analyzing traceable security, safety, and resiliency requirements which support evaluation criteria that can be designed-for, built-to, and verified with confidence.