Visible to the public Biblio

Filters: Keyword is potential attacks  [Clear All Filters]
2021-03-04
Hajizadeh, M., Afraz, N., Ruffini, M., Bauschert, T..  2020.  Collaborative Cyber Attack Defense in SDN Networks using Blockchain Technology. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :487—492.

The legacy security defense mechanisms cannot resist where emerging sophisticated threats such as zero-day and malware campaigns have profoundly changed the dimensions of cyber-attacks. Recent studies indicate that cyber threat intelligence plays a crucial role in implementing proactive defense operations. It provides a knowledge-sharing platform that not only increases security awareness and readiness but also enables the collaborative defense to diminish the effectiveness of potential attacks. In this paper, we propose a secure distributed model to facilitate cyber threat intelligence sharing among diverse participants. The proposed model uses blockchain technology to assure tamper-proof record-keeping and smart contracts to guarantee immutable logic. We use an open-source permissioned blockchain platform, Hyperledger Fabric, to implement the blockchain application. We also utilize the flexibility and management capabilities of Software-Defined Networking to be integrated with the proposed sharing platform to enhance defense perspectives against threats in the system. In the end, collaborative DDoS attack mitigation is taken as a case study to demonstrate our approach.

2021-02-22
Lansley, M., Kapetanakis, S., Polatidis, N..  2020.  SEADer++ v2: Detecting Social Engineering Attacks using Natural Language Processing and Machine Learning. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–6.
Social engineering attacks are well known attacks in the cyberspace and relatively easy to try and implement because no technical knowledge is required. In various online environments such as business domains where customers talk through a chat service with employees or in social networks potential hackers can try to manipulate other people by employing social attacks against them to gain information that will benefit them in future attacks. Thus, we have used a number of natural language processing steps and a machine learning algorithm to identify potential attacks. The proposed method has been tested on a semi-synthetic dataset and it is shown to be both practical and effective.
2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.