Visible to the public Biblio

Filters: Keyword is quantum state  [Clear All Filters]
2022-07-14
Gong, Changqing, Dong, Zhaoyang, Gani, Abdullah, Qi, Han.  2021.  Quantum Ciphertext Dimension Reduction Scheme for Homomorphic Encrypted Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :903—910.

At present, in the face of the huge and complex data in cloud computing, the parallel computing ability of quantum computing is particularly important. Quantum principal component analysis algorithm is used as a method of quantum state tomography. We perform feature extraction on the eigenvalue matrix of the density matrix after feature decomposition to achieve dimensionality reduction, proposed quantum principal component extraction algorithm (QPCE). Compared with the classic algorithm, this algorithm achieves an exponential speedup under certain conditions. The specific realization of the quantum circuit is given. And considering the limited computing power of the client, we propose a quantum homomorphic ciphertext dimension reduction scheme (QHEDR), the client can encrypt the quantum data and upload it to the cloud for computing. And through the quantum homomorphic encryption scheme to ensure security. After the calculation is completed, the client updates the key locally and decrypts the ciphertext result. We have implemented a quantum ciphertext dimensionality reduction scheme implemented in the quantum cloud, which does not require interaction and ensures safety. In addition, we have carried out experimental verification on the QPCE algorithm on IBM's real computing platform. Experimental results show that the algorithm can perform ciphertext dimension reduction safely and effectively.

2022-05-20
Susulovska, N. A., Gnatenko, Kh. P..  2021.  Quantifying Geometric Measure of Entanglement of Multi-qubit Graph States on the IBM’s Quantum Computer. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :465–466.
Quantum entanglement gives rise to a range of non-classical effects, which are extensively exploited in quantum computing and quantum communication. Therefore, detection and quantification of entanglement as well as preparation of highly entangled quantum states remain the fundamental objectives in these fields. Much attention has been devoted to the studies of graph states, which play a role of a central resource in quantum error correction, quantum cryptography and practical quantum metrology in the presence of noise.We examine multi-qubit graph states generated by the action of controlled phase shift operators on a separable quantum state of a system, in which all the qubits are in arbitrary identical states. Analytical expression is obtained for the geometric measure of entanglement of a qubit with other qubits in graph states represented by arbitrary graphs. We conclude that this quantity depends on the degree of the vertex corresponding to the qubit, the absolute values of the parameter of the phase shift gate and the parameter of the initial state the gate is acting on. Moreover, the geometric measure of entanglement of certain types of graph states is quantified on the IBM’s quantum computer ibmq\_athens based on the measurements of the mean spin. Namely, we consider states associated with the native connectivity of ibmq\_athens, the claw and the complete graphs. Appropriate protocols are proposed to prepare these states on the quantum computer. The results of quantum computations verify our theoretical findings [1].
2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.