Visible to the public Biblio

Filters: Keyword is JOP  [Clear All Filters]
2023-02-17
Eftekhari Moghadam, Vahid, Prinetto, Paolo, Roascio, Gianluca.  2022.  Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems. 2022 IEEE European Test Symposium (ETS). :1–4.
The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS).Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform.This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.
2022-03-14
Nurmukhametov, Alexey, Vishnyakov, Alexey, Logunova, Vlada, Kurmangaleev, Shamil.  2021.  MAJORCA: Multi-Architecture JOP and ROP Chain Assembler. 2021 Ivannikov Ispras Open Conference (ISPRAS). :37–46.
Nowadays, exploits often rely on a code-reuse approach. Short pieces of code called gadgets are chained together to execute some payload. Code-reuse attacks can exploit vul-nerabilities in the presence of operating system protection that prohibits data memory execution. The ROP chain construction task is the code generation for the virtual machine defined by an exploited executable. It is crucial to understand how powerful ROP attacks can be. Such knowledge can be used to improve software security. We implement MAJORCA that generates ROP and JOP payloads in an architecture agnostic manner and thoroughly consider restricted symbols such as null bytes that terminate data copying via strcpy. The paper covers the whole code-reuse payloads construction pipeline: cataloging gadgets, chaining them in DAG, scheduling, linearizing to the ready-to-run payload. MAJORCA automatically generates both ROP and JOP payloads for x86 and MIPS. MAJORCA constructs payloads respecting restricted symbols both in gadget addresses and data. We evaluate MAJORCA performance and accuracy with rop-benchmark and compare it with open-source compilers. We show that MAJORCA outperforms open-source tools. We propose a ROP chaining metric and use it to estimate the probabilities of successful ROP chaining for different operating systems with MAJORCA as well as other ROP compilers to show that ROP chaining is still feasible. This metric can estimate the efficiency of OS defences.
2021-05-03
Maunero, Nicoló, Prinetto, Paolo, Roascio, Gianluca, Varriale, Antonio.  2020.  A FPGA-based Control-Flow Integrity Solution for Securing Bare-Metal Embedded Systems. 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS). :1–10.
Memory corruption vulnerabilities, mainly present in C and C++ applications, may enable attackers to maliciously take control over the program running on a target machine by forcing it to execute an unintended sequence of instructions present in memory. This is the principle of modern Code-Reuse Attacks (CRAs) and of famous attack paradigms as Return-Oriented Programming (ROP) and Jump-Oriented Programming (JOP). Control-Flow Integrity (CFI) is a promising approach to protect against such runtime attacks. Recently, many CFI-based solutions have been proposed, resorting to both hardware and software implementations. However, many of these solutions are hardly applicable to microcontroller systems, often very resource-limited. The paper presents a generic, portable, and lightweight CFI solution for bare-metal embedded systems, i.e., systems that execute firmware directly from their Flash memory, without any Operating System. The proposed defense mixes software and hardware instrumentation and is based on monitoring the Control-Flow Graph (CFG) with an FPGA connected to the CPU. The solution, applicable in principle to any architecture which disposes of an FPGA, forces all control-flow transfers to be compliant with the CFG, and preserves the execution context from possible corruption when entering unpredictable code such as Interrupt Services Routines (ISR).
2019-10-14
Guo, Y., Chen, L., Shi, G..  2018.  Function-Oriented Programming: A New Class of Code Reuse Attack in C Applications. 2018 IEEE Conference on Communications and Network Security (CNS). :1–9.

Control-hijacking attacks include code injection attacks and code reuse attacks. In recent years, with the emergence of the defense mechanism data-execution prevention(DEP), code reuse attacks have become mainstream, such as return-oriented programming(ROP), Jump-Oriented Programming(JOP), and Counterfeit Object-oriented Programming(COOP). And a series of defensive measures have been proposed, such as DEP, address space layout randomization (ASLR), coarse-grained Control-Flow Integrity(CFI) and fine-grained CFI. In this paper, we propose a new attack called function-oriented programming(FOP) to construct malicious program behavior. FOP takes advantage of the existing function of the C program to induce attack. We propose concrete algorithms for FOP gadgets and build a tool to identify FOP gadgets. FOP can successfully bypass coarse-grained CFI, and FOP also can bypass some existing fine-grained CFI technologies, such as shadow stack technology. We show a real-world attack for proftpd1.3.0 server in the Linux x64 environment. We believe that the FOP attack will encourage people to come up with more effective defense measures.