Visible to the public Biblio

Filters: Keyword is Surveillance video  [Clear All Filters]
2022-05-10
Zhang, Lixue, Li, Yuqin, Gao, Yan, Li, Yanfang, Shi, Weili, Jiang, Zhengang.  2021.  A memory-enhanced anomaly detection method for surveillance videos. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). :1012–1015.
Surveillance videos can capture anomalies in real scenarios and play an important role in security systems. Anomaly events are unpredictable, which reflect the unsupervised nature of the problem. In addition, it is difficult to construct a complete video dataset which contains all normal events. Based on the diversity of normal events, this paper proposes a memory-enhanced unsupervised method for anomaly detection. The proposed method reconstructs video events by combining prototype features and encoded features to detect anomaly events. Furthermore, a memory module is introduced to better store the prototype patterns of normal events. Experimental results in various benchmark datasets demonstrate the effectiveness and robustness of the proposed method.
2021-07-07
Xu, Shenghao, Hung, Kevin.  2020.  Development of an AI-based System for Automatic Detection and Recognition of Weapons in Surveillance Videos. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :48–52.
Security cameras and video surveillance systems have become important infrastructures for ensuring safety and security of the general public. However, the detection of high-risk situations through these systems are still performed manually in many cities. The lack of manpower in the security sector and limited performance of human may result in undetected dangers or delay in detecting threats, posing risks for the public. In response, various parties have developed real-time and automated solutions for identifying risks based on surveillance videos. The aim of this work is to develop a low-cost, efficient, and artificial intelligence-based solution for the real-time detection and recognition of weapons in surveillance videos under different scenarios. The system was developed based on Tensorflow and preliminarily tested with a 294-second video which showed 7 weapons within 5 categories, including handgun, shotgun, automatic rifle, sniper rifle, and submachine gun. At the intersection over union (IoU) value of 0.50 and 0.75, the system achieved a precision of 0.8524 and 0.7006, respectively.
Kim, Hyungheon, Cha, Youngkyun, Kim, Taewoo, Kim, Pyeongkang.  2020.  A Study on the Security Threats and Privacy Policy of Intelligent Video Surveillance System Considering 5G Network Architecture. 2020 International Conference on Electronics, Information, and Communication (ICEIC). :1–4.
The surveillance video management system is rapidly expanding its scope of application at the request of citizens and the development of related technologies. In addition, as Cloud Computing and 5G network are applied with AI, scope and function of surveillance systems are being enhanced to intelligent CCTV beyond simple monitoring. However, intelligent CCTV systems with Mobile Edge Computing and 5G, which have the risk of privacy infringement. Accordingly, it is necessary to identify various types of security threats that can be occurred through the cloud based surveillance system and to eliminate the risk of privacy and personal information breaches. So, in this paper, we propose a hierarchical cloud based video surveillance system considering security on the 5G Network.
2021-01-11
Amrutha, C. V., Jyotsna, C., Amudha, J..  2020.  Deep Learning Approach for Suspicious Activity Detection from Surveillance Video. 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :335—339.

Video Surveillance plays a pivotal role in today's world. The technologies have been advanced too much when artificial intelligence, machine learning and deep learning pitched into the system. Using above combinations, different systems are in place which helps to differentiate various suspicious behaviors from the live tracking of footages. The most unpredictable one is human behaviour and it is very difficult to find whether it is suspicious or normal. Deep learning approach is used to detect suspicious or normal activity in an academic environment, and which sends an alert message to the corresponding authority, in case of predicting a suspicious activity. Monitoring is often performed through consecutive frames which are extracted from the video. The entire framework is divided into two parts. In the first part, the features are computed from video frames and in second part, based on the obtained features classifier predict the class as suspicious or normal.

2020-07-03
Dinama, Dima Maharika, A’yun, Qurrota, Syahroni, Achmad Dahlan, Adji Sulistijono, Indra, Risnumawan, Anhar.  2019.  Human Detection and Tracking on Surveillance Video Footage Using Convolutional Neural Networks. 2019 International Electronics Symposium (IES). :534—538.

Safety is one of basic human needs so we need a security system that able to prevent crime happens. Commonly, we use surveillance video to watch environment and human behaviour in a location. However, the surveillance video can only used to record images or videos with no additional information. Therefore we need more advanced camera to get another additional information such as human position and movement. This research were able to extract those information from surveillance video footage by using human detection and tracking algorithm. The human detection framework is based on Deep Learning Convolutional Neural Networks which is a very popular branch of artificial intelligence. For tracking algorithms, channel and spatial correlation filter is used to track detected human. This system will generate and export tracked movement on footage as an additional information. This tracked movement can be analysed furthermore for another research on surveillance video problems.

2019-08-12
Liu, Y., Yang, Y., Shi, A., Jigang, P., Haowei, L..  2019.  Intelligent monitoring of indoor surveillance video based on deep learning. 2019 21st International Conference on Advanced Communication Technology (ICACT). :648–653.

With the rapid development of information technology, video surveillance system has become a key part in the security and protection system of modern cities. Especially in prisons, surveillance cameras could be found almost everywhere. However, with the continuous expansion of the surveillance network, surveillance cameras not only bring convenience, but also produce a massive amount of monitoring data, which poses huge challenges to storage, analytics and retrieval. The smart monitoring system equipped with intelligent video analytics technology can monitor as well as pre-alarm abnormal events or behaviours, which is a hot research direction in the field of surveillance. This paper combines deep learning methods, using the state-of-the-art framework for instance segmentation, called Mask R-CNN, to train the fine-tuning network on our datasets, which can efficiently detect objects in a video image while simultaneously generating a high-quality segmentation mask for each instance. The experiment show that our network is simple to train and easy to generalize to other datasets, and the mask average precision is nearly up to 98.5% on our own datasets.

2018-04-04
Bao, D., Yang, F., Jiang, Q., Li, S., He, X..  2017.  Block RLS algorithm for surveillance video processing based on image sparse representation. 2017 29th Chinese Control And Decision Conference (CCDC). :2195–2200.

Block recursive least square (BRLS) algorithm for dictionary learning in compressed sensing system is developed for surveillance video processing. The new method uses image blocks directly and iteratively to train dictionaries via BRLS algorithm, which is different from classical methods that require to transform blocks to columns first and then giving all training blocks at one time. Since the background in surveillance video is almost fixed, the residual of foreground can be represented sparsely and reconstructed with background subtraction directly. The new method and framework are applied in real image and surveillance video processing. Simulation results show that the new method achieves better representation performance than classical ones in both image and surveillance video.

2015-05-01
Xianguo Zhang, Tiejun Huang, Yonghong Tian, Wen Gao.  2014.  Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding. Image Processing, IEEE Transactions on. 23:769-784.

The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.