Biblio
Filters: Keyword is virtual machine migration [Clear All Filters]
PAM PAL: Policy-Aware Virtual Machine Migration and Placement in Dynamic Cloud Data Centers. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2549—2558.
.
2020. We focus on policy-aware data centers (PADCs), wherein virtual machine (VM) traffic traverses a sequence of middleboxes (MBs) for security and performance purposes, and propose two new VM placement and migration problems. We first study PAL: policy-aware virtual machine placement. Given a PADC with a data center policy that communicating VM pairs must satisfy, the goal of PAL is to place the VMs into the PADC to minimize their total communication cost. Due to dynamic traffic loads in PADCs, however, above VM placement may no longer be optimal after some time. We thus study PAM: policy-aware virtual machine migration. Given an existing VM placement in the PADC and dynamic traffic rates among communicating VMs, PAM migrates VMs in order to minimize the total cost of migration and communication of the VM pairs. We design optimal, approximation, and heuristic policyaware VM placement and migration algorithms. Our experiments show that i) VM migration is an effective technique, reducing total communication cost of VM pairs by 25%, ii) our PAL algorithms outperform state-of-the-art VM placement algorithm that is oblivious to data center policies by 40-50%, and iii) our PAM algorithms outperform the only existing policy-aware VM migration scheme by 30%.
Enhanced Secure Mechanism for Virtual Machine Migration in Clouds. 2018 International Conference on Frontiers of Information Technology (FIT). :135–140.
.
2018. Live VM migration is the most vulnerable process in cloud federations for DDOS attacks, loss of data integrity, confidentiality, unauthorized access and injection of malicious viruses on VM disk images. We have scrutinized following set of crucial security features which are; authorization, confidentiality, replay protection (accountability), integrity, mutual authentication and source non-repudiation (availability) to cater different threats and vulnerabilities during live VM migration. The investigated threats and vulnerabilities are catered and implemented in a proposed solution, presented in this paper. Six security features-authorization, confidentiality, replay protection, integrity, mutual authentication and source non-repudiation are focused and modular implementation has been done. Solution is validated in AVISPA tool in modules for threats for all the notorious security requirements and no outbreak were seen.