Visible to the public Biblio

Filters: Keyword is Crowdsensing  [Clear All Filters]
2023-02-03
Moroni, Davide, Pieri, Gabriele, Reggiannini, Marco, Tampucci, Marco.  2022.  A mobile crowdsensing app for improved maritime security and awareness. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :103–105.
The marine and maritime domain is well represented in the Sustainable Development Goals (SDG) envisaged by the United Nations, which aim at conserving and using the oceans, seas and their resources for sustainable development. At the same time, there is a need for improved safety in navigation, especially in coastal areas. Up to date, there exist operational services based on advanced technologies, including remote sensing and in situ monitoring networks which provide aid to the navigation and control over the environment for its preservation. Yet, the possibilities offered by crowdsensing have not yet been fully explored. This paper addresses this issue by presenting an app based on a crowdsensing approach for improved safety and awareness at sea. The app can be integrated into more comprehensive systems and frameworks for environmental monitoring as envisaged in our future work.
2023-01-05
Jaimes, Luis G., Calderon, Juan, Shriver, Scott, Hendricks, Antonio, Lozada, Javier, Seenith, Sivasundaram, Chintakunta, Harish.  2022.  A Generative Adversarial Approach for Sybil Attacks Recognition for Vehicular Crowdsensing. 2022 International Conference on Connected Vehicle and Expo (ICCVE). :1–7.
Vehicular crowdsensing (VCS) is a subset of crowd-sensing where data collection is outsourced to group vehicles. Here, an entity interested in collecting data from a set of Places of Sensing Interest (PsI), advertises a set of sensing tasks, and the associated rewards. Vehicles attracted by the offered rewards deviate from their ongoing trajectories to visit and collect from one or more PsI. In this win-to-win scenario, vehicles reach their final destination with the extra reward, and the entity obtains the desired samples. Unfortunately, the efficiency of VCS can be undermined by the Sybil attack, in which an attacker can benefit from the injection of false vehicle identities. In this paper, we present a case study and analyze the effects of such an attack. We also propose a defense mechanism based on generative adversarial neural networks (GANs). We discuss GANs' advantages, and drawbacks in the context of VCS, and new trends in GANs' training that make them suitable for VCS.
2021-07-08
Abdo, Mahmoud A., Abdel-Hamid, Ayman A., Elzouka, Hesham A..  2020.  A Cloud-based Mobile Healthcare Monitoring Framework with Location Privacy Preservation. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT). :1—8.
Nowadays, ubiquitous healthcare monitoring applications are becoming a necessity. In a pervasive smart healthcare system, the user's location information is always transmitted periodically to healthcare providers to increase the quality of the service provided to the user. However, revealing the user's location will affect the user's privacy. This paper presents a novel cloud-based secure location privacy-preserving mobile healthcare framework with decision-making capabilities. A user's vital signs are sensed possibly through a wearable healthcare device and transmitted to a cloud server for securely storing user's data, processing, and decision making. The proposed framework integrates a number of features such as machine learning (ML) for classifying a user's health state, and crowdsensing for collecting information about a person's privacy preferences for possible locations and applying such information to a user who did not set his privacy preferences. In addition to location privacy preservation methods (LPPM) such as obfuscation, perturbation and encryption to protect the location of the user and provide a secure monitoring framework. The proposed framework detects clear emergency cases and quickly decides about sending a help message to a healthcare provider before sending data to the cloud server. To validate the efficiency of the proposed framework, a prototype is developed and tested. The obtained results from the proposed prototype prove its feasibility and utility. Compared to the state of art, the proposed framework offers an adaptive context-based decision for location sharing privacy and controlling the trade-off between location privacy and service utility.
2020-07-09
Duan, Huayi, Zheng, Yifeng, Du, Yuefeng, Zhou, Anxin, Wang, Cong, Au, Man Ho.  2019.  Aggregating Crowd Wisdom via Blockchain: A Private, Correct, and Robust Realization. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1—10.

Crowdsensing, driven by the proliferation of sensor-rich mobile devices, has emerged as a promising data sensing and aggregation paradigm. Despite useful, traditional crowdsensing systems typically rely on a centralized third-party platform for data collection and processing, which leads to concerns like single point of failure and lack of operation transparency. Such centralization hinders the wide adoption of crowdsensing by wary participants. We therefore explore an alternative design space of building crowdsensing systems atop the emerging decentralized blockchain technology. While enjoying the benefits brought by the public blockchain, we endeavor to achieve a consolidated set of desirable security properties with a proper choreography of latest techniques and our customized designs. We allow data providers to safely contribute data to the transparent blockchain with the confidentiality guarantee on individual data and differential privacy on the aggregation result. Meanwhile, we ensure the service correctness of data aggregation and sanitization by delicately employing hardware-assisted transparent enclave. Furthermore, we maintain the robustness of our system against faulty data providers that submit invalid data, with a customized zero-knowledge range proof scheme. The experiment results demonstrate the high efficiency of our designs on both mobile client and SGX-enabled server, as well as reasonable on-chain monetary cost of running our task contract on Ethereum.

2019-10-15
Liang, Danwei, An, Jian, Cheng, Jindong, Yang, He, Gui, Ruowei.  2018.  The Quality Control in Crowdsensing Based on Twice Consensuses of Blockchain. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. :630–635.
In most crowdsensing systems, the quality of the collected data is varied and difficult to evaluate while the existing crowdsensing quality control methods are mostly based on a central platform, which is not completely trusted in reality and results in fraud and other problems. To solve these questions, a novel crowdsensing quality control model is proposed in this paper. First, the idea of blockchain is introduced into this model. The credit-based verifier selection mechanism and twice consensuses are proposed to realize the non-repudiation and non-tampering of information in crowdsensing. Then, the quality grading evaluation (QGE) is put forward, in which the method of truth discovery and the idea of fuzzy theories are combined to evaluate the quality of sensing data, and the garbled circuit is used to ensure that evaluation criteria can not be leaked. Finally, the Experiments show that our model is feasible in time and effective in quality evaluation.