Biblio
There are various Lightweight Block Ciphers (LBC) nowadays that exist to meet the demand on security requirements of the current trend in computing world, the application in the resource-constrained devices, and the Internet of Things (IoT) technologies. One way to evaluate these LBCs is to conduct a performance analysis. Performance evaluation parameters seek appropriate value such as encryption time, security level, scalability, and flexibility. Like SIMECK block cipher whose algorithm design was anchored with the SIMON and SPECK block ciphers were efficient in security and performance, there is a need to revisit its design. This paper aims to present a comparative study on the performance analysis of the enhanced round function of the SIMECK Family block cipher. The enhanced ARX structure of the round function on the three variants shows an efficient performance over the original algorithm in different simulations using the following methods of measurement; avalanche effect, runtime performance, and brute-force attack. Its recommended that the enhanced round function of the SIMECK family be evaluated by different security measurements and attacks.
This paper attempts to introduce the enhanced SHA-1 algorithm which features a simple quadratic function that will control the selection of primitive function and constant used per round of SHA-1. The message digest for this enhancement is designed for 512 hashed value that will answer the possible occurrence of hash collisions. Moreover, this features the architecture of 8 registers of A, B, C, D, E, F, G, and H which consists of 64 bits out of the total 512 bits. The testing of frequency for Q15 and Q0 will prove that the selection of primitive function and the constant used are not equally distributed. Implementation of extended bits for hash message will provide additional resources for dictionary attacks and the extension of its hash outputs will provide an extended time for providing a permutation of 512 hash bits.