Visible to the public Biblio

Filters: Keyword is Variety  [Clear All Filters]
2023-05-12
Arca, Sevgi, Hewett, Rattikorn.  2022.  Anonymity-driven Measures for Privacy. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :6–10.
In today’s world, digital data are enormous due to technologies that advance data collection, storage, and analyses. As more data are shared or publicly available, privacy is of great concern. Having privacy means having control over your data. The first step towards privacy protection is to understand various aspects of privacy and have the ability to quantify them. Much work in structured data, however, has focused on approaches to transforming the original data into a more anonymous form (via generalization and suppression) while preserving the data integrity. Such anonymization techniques count data instances of each set of distinct attribute values of interest to signify the required anonymity to protect an individual’s identity or confidential data. While this serves the purpose, our research takes an alternative approach to provide quick privacy measures by way of anonymity especially when dealing with large-scale data. This paper presents a study of anonymity measures based on their relevant properties that impact privacy. Specifically, we identify three properties: uniformity, variety, and diversity, and formulate their measures. The paper provides illustrated examples to evaluate their validity and discusses the use of multi-aspects of anonymity and privacy measures.
2019-10-28
Huang, Jingwei.  2018.  From Big Data to Knowledge: Issues of Provenance, Trust, and Scientific Computing Integrity. 2018 IEEE International Conference on Big Data (Big Data). :2197–2205.
This paper addresses the nature of data and knowledge, the relation between them, the variety of views as a characteristic of Big Data regarding that data may come from many different sources/views from different viewpoints, and the associated essential issues of data provenance, knowledge provenance, scientific computing integrity, and trust in the data science process. Towards the direction of data-intensive science and engineering, it is of paramount importance to ensure Scientific Computing Integrity (SCI). A failure of SCI may be caused by malicious attacks, natural environmental changes, faults of scientists, operations mistakes, faults of supporting systems, faults of processes, and errors in the data or theories on which a research relies. The complexity of scientific workflows and large provenance graphs as well as various causes for SCI failures make ensuring SCI extremely difficult. Provenance and trust play critical role in evaluating SCI. This paper reports our progress in building a model for provenance-based trust reasoning about SCI.