Visible to the public Biblio

Filters: Keyword is Map  [Clear All Filters]
2019-12-30
Kim, Sang Wu, Liu, Xudong.  2018.  Crypto-Aided Bayesian Detection of False Data in Short Messages. 2018 IEEE Statistical Signal Processing Workshop (SSP). :253-257.

We propose a crypto-aided Bayesian detection framework for detecting false data in short messages with low overhead. The proposed approach employs the Bayesian detection at the physical layer in parallel with a lightweight cryptographic detection, followed by combining the two detection outcomes. We develop the maximum a posteriori probability (MAP) rule for combining the cryptographic and Bayesian detection outcome, which minimizes the average probability of detection error. We derive the probability of false alarm and missed detection and discuss the improvement of detection accuracy provided by the proposed method.

2019-10-28
Zhai, Keke, Banerjee, Tania, Zwick, David, Hackl, Jason, Ranka, Sanjay.  2018.  Dynamic Load Balancing for Compressible Multiphase Turbulence. Proceedings of the 2018 International Conference on Supercomputing. :318–327.
CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.