Visible to the public Biblio

Filters: Keyword is reversible watermarking  [Clear All Filters]
2023-03-17
Wang, Wenchao, Liu, Chuanyi, Wang, Zhaoguo, Liang, Tiancai.  2022.  FBIPT: A New Robust Reversible Database Watermarking Technique Based on Position Tuples. 2022 4th International Conference on Data Intelligence and Security (ICDIS). :67–74.
Nowadays, data is essential in several fields, such as science, finance, medicine, and transportation, which means its value continues to rise. Relational databases are vulnerable to copyright threats when transmitted and shared as a carrier of data. The watermarking technique is seen as a partial solution to the problem of securing copyright ownership. However, most of them are currently restricted to numerical attributes in relational databases, limiting their versatility. Furthermore, they modify the source data to a large extent, failing to keep the characteristics of the original database, and they are susceptible to solid malicious attacks. This paper proposes a new robust reversible watermarking technique, Fields Based Inserting Position Tuples algorithm (FBIPT), for relational databases. FBIPT does not modify the original database directly; instead, it inserts some position tuples based on three Fields―Group Field, Feature Field, and Control Field. Field information can be calculated by numeric attributes and any attribute that can be transformed into binary bits. FBIPT technique retains all the characteristics of the source database, and experimental results prove the effectiveness of FBIPT and show its highly robust performance compared to state-of-the-art watermarking schemes.
2021-08-31
Ge, Chonghui, Sun, Jian, Sun, Yuxin, Di, Yunlong, Zhu, Yongjin, Xie, Linfeng, Zhang, Yingzhou.  2020.  Reversible Database Watermarking Based on Random Forest and Genetic Algorithm. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :239—247.
The advancing information technology is playing more and more important role in data mining of relational database.1 The transfer and sharing of databases cause the copyright-related security threats. Database watermarking technology can effectively solve the problem with copyright protection and traceability, which has been attracting researchers' attention. In this paper, we proposed a novel, robust and reversible database watermarking technique, named histogram shifting watermarking based on random forest and genetic algorithm (RF-GAHCSW). It greatly improves the watermark capacity by means of histogram width reduction and eliminates the impact of the prediction error attack. Meanwhile, random forest algorithm is used to select important attributes for watermark embedding, and genetic algorithm is employed to find the optimal secret key for the database grouping and determine the position of watermark embedding to improve the watermark capacity and reduce data distortion. The experimental results show that the robustness of RF-GAHCSW is greatly improved, compared with the original HSW, and the distortion has little effect on the usability of database.
2020-10-19
Umamageswari, A., Jebasheela, A., Ruby, D., Leo Vijilious, M.A..  2019.  Enhancing Security in Medical Image Informatics with Various Attacks. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–8.
The objective of the work is to provide security to the medical images by embedding medical data (EPR-Electronic Patient Record) along with the image to reduce the bandwidth during communication. Reversible watermarking and Digital Signature itself will provide high security. This application mainly used in tele-surgery (Medical Expert to Medical Expert Communication). Only the authorized medical experts can explore the patients' image because of Kerberos. The proposed work is mainly to restrict the unauthorized access to get the patients'data. So medical image authentication may be achieved without biometric recognition such as finger prints and eye stamps etc. The EPR itself contains the patients' entire history, so after the extraction process Medical expert can able to identify the patient and also the disease information. In future we can embed the EPR inside the medical image after it got encrypted to achieve more security. To increase the authentication, Medical Expert biometric information can be embedded inside the image in the future. Experiments were conducted using more than 500 (512 × 512) image archives in various modalities from the NIH (National Institute of Health) and Aycan sample digital images downloaded from the internet and tests are conducted. Almost in all images with greater than 15000 bits embedding size and got PSNR of 60.4 dB to 78.9 dB with low distortion in received image because of compression, not because of watermarking and average NPCR (Number of Pixels Change Rate) is 98.9 %.
2019-11-04
Tufail, Hina, Zafar, Kashif, Baig, Rauf.  2018.  Digital Watermarking for Relational Database Security Using mRMR Based Binary Bat Algorithm. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1948–1954.
Publically available relational data without security protection may cause data protection issues. Watermarking facilitates solution for remote sharing of relational database by ensuring data integrity and security. In this research, a reversible watermarking for numerical relational database by using evolutionary technique has been proposed that ensure the integrity of underlying data and robustness of watermark. Moreover, mRMR based feature subset selection technique has been used to select attributes for implementation of watermark instead of watermarking whole database. Binary Bat algorithm has been used as constraints optimization technique for watermark creation. Experimental results have shown the effectiveness of the proposed technique against data tempering attacks. In case of alteration attacks, almost 70% data has been recovered, 50% in deletion attacks and 100% data is retrieved after insertion attacks. The watermarking based on evolutionary technique (WET) i.e., mRMR based Binary Bat Algorithm ensures the data accuracy and it is resilient against malicious attacks.