Biblio
Many surveillance cameras are using everywhere, the videos or images captured by these cameras are still dumped but they are not processed. Many methods are proposed for tracking and detecting the objects in the videos but we need the meaningful content called semantic content from these videos. Detecting Human activity recognition is quite complex. The proposed method called Semantic Content Extraction (SCE) from videos is used to identify the objects and the events present in the video. This model provides useful methodology for intruder detecting systems which provides the behavior and the activities performed by the intruder. Construction of ontology enhances the spatial and temporal relations between the objects or features extracted. Thus proposed system provides a best way for detecting the intruders, thieves and malpractices happening around us.
This paper propose a fast human detection algorithm of video surveillance in emergencies. Firstly through the background subtraction based on the single Guassian model and frame subtraction, we get the target mask which is optimized by Gaussian filter and dilation. Then the interest points of head is obtained from figures with target mask and edge detection. Finally according to detecting these pionts we can track the head and count the number of people with the frequence of moving target at the same place. Simulation results show that the algorithm can detect the moving object quickly and accurately.
Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we deal with two un-synchronized data sources collected in real-world operating scenarios: full-motion videos (FMV) and analyst call-outs (ACO) in the form of chat messages (voice-to-text) made by a human watching the streamed FMV from an aerial platform. We present a multi-source multi-modal activity/event recognition system for surveillance applications, consisting of: (1) detecting and tracking multiple dynamic targets from a moving platform, (2) representing FMV target tracks and chat messages as graphs of attributes, (3) associating FMV tracks and chat messages using a probabilistic graph-based matching approach, and (4) detecting spatial-temporal activity boundaries. We also present an activity pattern learning framework which uses the multi-source associated data as training to index a large archive of FMV videos. Finally, we describe a multi-intelligence user interface for querying an index of activities of interest (AOIs) by movement type and geo-location, and for playing-back a summary of associated text (ACO) and activity video segments of targets-of-interest (TOIs) (in both pixel and geo-coordinates). Such tools help the end-user to quickly search, browse, and prepare mission reports from multi-source data.
An abnormal behavior detection algorithm for surveillance is required to correctly identify the targets as being in a normal or chaotic movement. A model is developed here for this purpose. The uniqueness of this algorithm is the use of foreground detection with Gaussian mixture (FGMM) model before passing the video frames to optical flow model using Lucas-Kanade approach. Information of horizontal and vertical displacements and directions associated with each pixel for object of interest is extracted. These features are then fed to feed forward neural network for classification and simulation. The study is being conducted on the real time videos and some synthesized videos. Accuracy of method has been calculated by using the performance parameters for Neural Networks. In comparison of plain optical flow with this model, improved results have been obtained without noise. Classes are correctly identified with an overall performance equal to 3.4e-02 with & error percentage of 2.5.