Visible to the public Biblio

Filters: Keyword is location determination  [Clear All Filters]
2020-11-02
Davydov, Vadim, Bezzateev, Sergey.  2018.  Secure Information Exchange in Defining the Location of the Vehicle. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.

With the advent of the electric vehicle market, the problem of locating a vehicle is becoming more and more important. Smart roads are creating, where the car control system can work without a person - communicating with the elements on the road. The standard technologies, such as GPS, can't always accurately determine the location, and not all vehicles have a GPS-module. It is very important to build an effective secure communication protocol between the vehicle and the base stations on the road. In this paper we consider different methods of location determination, propose the improved communicating protocol between the vehicle and the base station.

2019-11-04
Altay, Osman, Ulas, Mustafa.  2018.  Location Determination by Processing Signal Strength of Wi-Fi Routers in the Indoor Environment with Linear Discriminant Classifier. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-4.

Location determination in the indoor areas as well as in open areas is important for many applications. But location determination in the indoor areas is a very difficult process compared to open areas. The Global Positioning System (GPS) signals used for position detection is not effective in the indoor areas. Wi-Fi signals are a widely used method for localization detection in the indoor area. In the indoor areas, localization can be used for many different purposes, such as intelligent home systems, locations of people, locations of products in the depot. In this study, it was tried to determine localization for with the classification method for 4 different areas by using Wi-Fi signal values obtained from different routers for indoor location determination. Linear discriminant analysis (LDA) classification was used for classification. In the test using 10k fold cross-validation, 97.2% accuracy value was calculated.