Visible to the public Biblio

Filters: Keyword is optical flow  [Clear All Filters]
2021-01-15
Amerini, I., Galteri, L., Caldelli, R., Bimbo, A. Del.  2019.  Deepfake Video Detection through Optical Flow Based CNN. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). :1205—1207.
Recent advances in visual media technology have led to new tools for processing and, above all, generating multimedia contents. In particular, modern AI-based technologies have provided easy-to-use tools to create extremely realistic manipulated videos. Such synthetic videos, named Deep Fakes, may constitute a serious threat to attack the reputation of public subjects or to address the general opinion on a certain event. According to this, being able to individuate this kind of fake information becomes fundamental. In this work, a new forensic technique able to discern between fake and original video sequences is given; unlike other state-of-the-art methods which resorts at single video frames, we propose the adoption of optical flow fields to exploit possible inter-frame dissimilarities. Such a clue is then used as feature to be learned by CNN classifiers. Preliminary results obtained on FaceForensics++ dataset highlight very promising performances.
2020-12-11
Cao, Y., Tang, Y..  2019.  Development of Real-Time Style Transfer for Video System. 2019 3rd International Conference on Circuits, System and Simulation (ICCSS). :183—187.

Re-drawing the image as a certain artistic style is considered to be a complicated task for computer machine. On the contrary, human can easily master the method to compose and describe the style between different images. In the past, many researchers studying on the deep neural networks had found an appropriate representation of the artistic style using perceptual loss and style reconstruction loss. In the previous works, Gatys et al. proposed an artificial system based on convolutional neural networks that creates artistic images of high perceptual quality. Whereas in terms of running speed, it was relatively time-consuming, thus it cannot apply to video style transfer. Recently, a feed-forward CNN approach has shown the potential of fast style transformation, which is an end-to-end system without hundreds of iteration while transferring. We combined the benefits of both approaches, optimized the feed-forward network and defined time loss function to make it possible to implement the style transfer on video in real time. In contrast to the past method, our method runs in real time with higher resolution while creating competitive visually pleasing and temporally consistent experimental results.

2020-12-07
Chang, R., Chang, C., Way, D., Shih, Z..  2018.  An improved style transfer approach for videos. 2018 International Workshop on Advanced Image Technology (IWAIT). :1–2.

In this paper, we present an improved approach to transfer style for videos based on semantic segmentation. We segment foreground objects and background, and then apply different styles respectively. A fully convolutional neural network is used to perform semantic segmentation. We increase the reliability of the segmentation, and use the information of segmentation and the relationship between foreground objects and background to improve segmentation iteratively. We also use segmentation to improve optical flow, and apply different motion estimation methods between foreground objects and background. This improves the motion boundaries of optical flow, and solves the problems of incorrect and discontinuous segmentation caused by occlusion and shape deformation.

2018-12-03
Liu, Zhilei, Zhang, Cuicui.  2017.  Spatio-temporal Analysis for Infrared Facial Expression Recognition from Videos. Proceedings of the International Conference on Video and Image Processing. :63–67.

Facial expression recognition (FER) for emotion inference has become one of the most important research fields in human-computer interaction. Existing study on FER mainly focuses on visible images, whereas varying lighting conditions may influence their performances. Recent studies have demonstrated the advantages of infrared thermal images reflecting the temperature distributions, which are robust to lighting changes. In this paper, a novel infrared image sequence based FER method is proposed using spatiotemporal feature analysis and deep Boltzmann machines (DBM). Firstly, a dense motion field among infrared image sequences is generated using optical flow algorithm. Then, PCA is applied for dimension reduction and a three-layer DBM structure is designed for final expression classification. Finally, the effectiveness of the proposed method is well demonstrated based on several experiments conducted on NVIE database.

2015-05-01
Rasheed, N., Khan, S.A., Khalid, A..  2014.  Tracking and Abnormal Behavior Detection in Video Surveillance Using Optical Flow and Neural Networks. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :61-66.

An abnormal behavior detection algorithm for surveillance is required to correctly identify the targets as being in a normal or chaotic movement. A model is developed here for this purpose. The uniqueness of this algorithm is the use of foreground detection with Gaussian mixture (FGMM) model before passing the video frames to optical flow model using Lucas-Kanade approach. Information of horizontal and vertical displacements and directions associated with each pixel for object of interest is extracted. These features are then fed to feed forward neural network for classification and simulation. The study is being conducted on the real time videos and some synthesized videos. Accuracy of method has been calculated by using the performance parameters for Neural Networks. In comparison of plain optical flow with this model, improved results have been obtained without noise. Classes are correctly identified with an overall performance equal to 3.4e-02 with & error percentage of 2.5.