Biblio
Online Social Networks(OSN) plays a vital role in our day to day life. The most popular social network, Facebook alone counts currently 2.23 billion users worldwide. Online social network users are aware of the various security risks that exist in this scenario including privacy violations and they are utilizing the privacy settings provided by OSN providers to make their data safe. But most of them are unaware of the risk which exists after deletion of their data which is not really getting deleted from the OSN server. Self destruction of data is one of the prime recommended methods to achieve assured deletion of data. Numerous techniques have been developed for self destruction of data and this paper discusses and evaluates these techniques along with the various privacy risks faced by an OSN user in this web centered world.
The increasing publication of large amounts of data, theoretically anonymous, can lead to a number of attacks on the privacy of people. The publication of sensitive data without exposing the data owners is generally not part of the software developers concerns. The regulations for the data privacy-preserving create an appropriate scenario to focus on privacy from the perspective of the use or data exploration that takes place in an organization. The increasing number of sanctions for privacy violations motivates the systematic comparison of three known machine learning algorithms in order to measure the usefulness of the data privacy preserving. The scope of the evaluation is extended by comparing them with a known privacy preservation metric. Different parameter scenarios and privacy levels are used. The use of publicly available implementations, the presentation of the methodology, explanation of the experiments and the analysis allow providing a framework of work on the problem of the preservation of privacy. Problems are shown in the measurement of the usefulness of the data and its relationship with the privacy preserving. The findings motivate the need to create optimized metrics on the privacy preferences of the owners of the data since the risks of predicting sensitive attributes by means of machine learning techniques are not usually eliminated. In addition, it is shown that there may be a hundred percent, but it cannot be measured. As well as ensuring adequate performance of machine learning models that are of interest to the organization that data publisher.