Visible to the public Biblio

Filters: Keyword is network theory  [Clear All Filters]
2021-07-27
Ruiz-Martin, Cristina, Wainer, Gabriel, Lopez-Paredes, Adolfo.  2020.  Studying Communications Resiliency in Emergency Plans. 2020 Spring Simulation Conference (SpringSim). :1–12.
Recent disasters have shown that hazards can be unpredictable and can have catastrophic consequences. Emergency plans are key to dealing with these situations and communications play a key role in emergency management. In this paper, we provide a formalism to design resilient emergency plans in terms of communications. We exemplify how to use the formalism using a case study of a Nuclear Emergency Plan.
2020-10-12
Asadi, Nima, Rege, Aunshul, Obradovic, Zoran.  2018.  Analysis of Adversarial Movement Through Characteristics of Graph Topological Ordering. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
Capturing the patterns in adversarial movement can provide valuable information regarding how the adversaries progress through cyberattacks. This information can be further employed for making comparisons and interpretations of decision making of the adversaries. In this study, we propose a framework based on concepts of social networks to characterize and compare the patterns, variations and shifts in the movements made by an adversarial team during a real-time cybersecurity exercise. We also explore the possibility of movement association with the skill sets using topological sort networks. This research provides preliminary insight on adversarial movement complexity and linearity and decision-making as cyberattacks unfold.
2019-11-19
Nasiruzzaman, A. B. M., Akter, M. N., Mahmud, M. A., Pota, H. R..  2018.  Network Theory Based Power Grid Criticality Assessment. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). :1-5.

A process of critical transmission lines identification in presented here. The criticality is based on network flow, which is essential for power grid connectivity monitoring as well as vulnerability assessment. The proposed method can be utilized as a supplement of traditional situational awareness tool in the energy management system of the power grid control center. At first, a flow network is obtained from topological as well as functional features of the power grid. Then from the duality property of a linear programming problem, the maximum flow problem is converted to a minimum cut problem. Critical transmission lines are identified as a solution of the dual problem. An overall set of transmission lines are identified from the solution of the network flow problem. Simulation of standard IEEE test cases validates the application of the method in finding critical transmission lines of the power grid.