Visible to the public Biblio

Filters: Keyword is channel decoding  [Clear All Filters]
2021-03-15
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

2019-11-25
Benamira, Elias, Merazka, Fatiha, Kurt, Gunes Karabulut.  2018.  Joint Channel Coding and Cooperative Network Coding on PSK Constellations in Wireless Networks. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :132–137.
In this paper, we consider the application of Reed-Solomon (RS) channel coding for joint error correction and cooperative network coding on non-binary phase shift keying (PSK) modulated signals. The relay first decodes the RS channel coded messages received each in a time slot from all sources before applying network coding (NC) by the use of bit-level exclusive OR (XOR) operation. The network coded resulting message is then channel encoded before its transmission to the next relay or to the destination according to the network configuration. This scenario shows superior performance in comparison with the case where the relay does not perform channel coding/decoding. For different orders of PSK modulation and different wireless configurations, simulation results demonstrate the improvements resulting from the use of RS channel codes in terms of symbol error rate (SER) versus signal-to-noise ratio (SNR).