Biblio
Filters: Keyword is Closed-form solutions [Clear All Filters]
Exact Sparse Signal Recovery via Orthogonal Matching Pursuit with Prior Information. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5003–5007.
.
2019. The orthogonal matching pursuit (OMP) algorithm is a commonly used algorithm for recovering K-sparse signals x ∈ ℝn from linear model y = Ax, where A ∈ ℝm×n is a sensing matrix. A fundamental question in the performance analysis of OMP is the characterization of the probability that it can exactly recover x for random matrix A. Although in many practical applications, in addition to the sparsity, x usually also has some additional property (for example, the nonzero entries of x independently and identically follow the Gaussian distribution), none of existing analysis uses these properties to answer the above question. In this paper, we first show that the prior distribution information of x can be used to provide an upper bound on \textbackslashtextbar\textbackslashtextbarx\textbackslashtextbar\textbackslashtextbar21/\textbackslashtextbar\textbackslashtextbarx\textbackslashtextbar\textbackslashtextbar22, and then explore the bound to develop a better lower bound on the probability of exact recovery with OMP in K iterations. Simulation tests are presented to illustrate the superiority of the new bound.
The Explicit Coding Rate Region of Symmetric Multilevel Diversity Coding. 2018 Information Theory and Applications Workshop (ITA). :1–9.
.
2018. It is well known that superposition coding, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999). However, the characterization of the coding rate region therein involves uncountably many linear inequalities and the constant term (i.e., the lower bound) in each inequality is given in terms of the solution of a linear optimization problem. Thus this implicit characterization of the coding rate region does not enable the determination of the achievability of a given rate tuple. In this paper, we first obtain closed-form expressions of these uncountably many inequalities. Then we identify a finite subset of inequalities that is sufficient for characterizing the coding rate region. This gives an explicit characterization of the coding rate region. We further show by the symmetry of the problem that only a much smaller subset of this finite set of inequalities needs to be verified in determining the achievability of a given rate tuple. Yet, the cardinality of this smaller set grows at least exponentially fast with L.