Visible to the public Biblio

Filters: Keyword is features extraction  [Clear All Filters]
2022-05-23
Du, Hao, Zhang, Yu, Qin, Bo, Xu, Weiduo.  2021.  Immersive Visualization VR System of 3D Time-varying Field. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). :322–326.
To meet the application need of dynamic visualization VR display of 3D time-varying field, this paper designed an immersive visualization VR system of 3D time-varying field based on the Unity 3D framework. To reduce visual confusion caused by 3D time-varying field flow line drawing and improve the quality and efficiency of visualization rendering drawing, deep learning was used to extract features from the mesoscale vortex of the 3D time-varying field. Moreover, the 3D flow line dynamic visualization drawing was implemented through the Unity Visual Effect Graph particle system.
2019-11-19
Wang, Jiye, Sun, Yuyan, Miao, Siwei, Shi, Zhiqiang, Sun, Limin.  2018.  Vulnerability and Protocol Association of Device Firmware in Power Grid. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS). :259-263.

The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.

2018-12-10
Ndichu, S., Ozawa, S., Misu, T., Okada, K..  2018.  A Machine Learning Approach to Malicious JavaScript Detection using Fixed Length Vector Representation. 2018 International Joint Conference on Neural Networks (IJCNN). :1–8.

To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of browsers and plugin software, and attack visitors of a web site unknowingly. To protect users from such threads, the development of an accurate detection system for malicious JS is soliciting. Conventional approaches often employ signature and heuristic-based methods, which are prone to suffer from zero-day attacks, i.e., causing many false negatives and/or false positives. For this problem, this paper adopts a machine-learning approach to feature learning called Doc2Vec, which is a neural network model that can learn context information of texts. The extracted features are given to a classifier model (e.g., SVM and neural networks) and it judges the maliciousness of a JS code. In the performance evaluation, we use the D3M Dataset (Drive-by-Download Data by Marionette) for malicious JS codes and JSUPACK for benign ones for both training and test purposes. We then compare the performance to other feature learning methods. Our experimental results show that the proposed Doc2Vec features provide better accuracy and fast classification in malicious JS code detection compared to conventional approaches.

2017-12-12
Sun, F., Zhang, P., White, J., Schmidt, D., Staples, J., Krause, L..  2017.  A Feasibility Study of Autonomically Detecting In-Process Cyber-Attacks. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

A cyber-attack detection system issues alerts when an attacker attempts to coerce a trusted software application to perform unsafe actions on the attacker's behalf. One way of issuing such alerts is to create an application-agnostic cyber- attack detection system that responds to prevalent software vulnerabilities. The creation of such an autonomic alert system, however, is impeded by the disparity between implementation language, function, quality-of-service (QoS) requirements, and architectural patterns present in applications, all of which contribute to the rapidly changing threat landscape presented by modern heterogeneous software systems. This paper evaluates the feasibility of creating an autonomic cyber-attack detection system and applying it to several exemplar web-based applications using program transformation and machine learning techniques. Specifically, we examine whether it is possible to detect cyber-attacks (1) online, i.e., as they occur using lightweight structures derived from a call graph and (2) offline, i.e., using machine learning techniques trained with features extracted from a trace of application execution. In both cases, we first characterize normal application behavior using supervised training with the test suites created for an application as part of the software development process. We then intentionally perturb our test applications so they are vulnerable to common attack vectors and then evaluate the effectiveness of various feature extraction and learning strategies on the perturbed applications. Our results show that both lightweight on-line models based on control flow of execution path and application specific off-line models can successfully and efficiently detect in-process cyber-attacks against web applications.

2017-03-08
Chang, C., Liu, F., Liu, K..  2015.  Software Structure Analysis Using Network Theory. 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). :519–522.

Software structure analysis is crucial in software testing. Using complex network theory, we present a series of methods and build a two-layer network model for software analysis, including network metrics calculation and features extraction. Through identifying the critical functions and reused modules, we can reduce nearly 80% workload in software testing on average. Besides, the structure network shows some interesting features that can assist to understand the software more clearly.

2017-03-07
Alnaami, K., Ayoade, G., Siddiqui, A., Ruozzi, N., Khan, L., Thuraisingham, B..  2015.  P2V: Effective Website Fingerprinting Using Vector Space Representations. 2015 IEEE Symposium Series on Computational Intelligence. :59–66.

Language vector space models (VSMs) have recently proven to be effective across a variety of tasks. In VSMs, each word in a corpus is represented as a real-valued vector. These vectors can be used as features in many applications in machine learning and natural language processing. In this paper, we study the effect of vector space representations in cyber security. In particular, we consider a passive traffic analysis attack (Website Fingerprinting) that threatens users' navigation privacy on the web. By using anonymous communication, Internet users (such as online activists) may wish to hide the destination of web pages they access for different reasons such as avoiding tyrant governments. Traditional website fingerprinting studies collect packets from the users' network and extract features that are used by machine learning techniques to reveal the destination of certain web pages. In this work, we propose the packet to vector (P2V) approach where we model website fingerprinting attack using word vector representations. We show how the suggested model outperforms previous website fingerprinting works.

2017-02-23
K. Alnaami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan, B. Thuraisingham.  2015.  "P2V: Effective Website Fingerprinting Using Vector Space Representations". 2015 IEEE Symposium Series on Computational Intelligence. :59-66.

Language vector space models (VSMs) have recently proven to be effective across a variety of tasks. In VSMs, each word in a corpus is represented as a real-valued vector. These vectors can be used as features in many applications in machine learning and natural language processing. In this paper, we study the effect of vector space representations in cyber security. In particular, we consider a passive traffic analysis attack (Website Fingerprinting) that threatens users' navigation privacy on the web. By using anonymous communication, Internet users (such as online activists) may wish to hide the destination of web pages they access for different reasons such as avoiding tyrant governments. Traditional website fingerprinting studies collect packets from the users' network and extract features that are used by machine learning techniques to reveal the destination of certain web pages. In this work, we propose the packet to vector (P2V) approach where we model website fingerprinting attack using word vector representations. We show how the suggested model outperforms previous website fingerprinting works.

2015-05-01
Harish, P., Subhashini, R., Priya, K..  2014.  Intruder detection by extracting semantic content from surveillance videos. Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on. :1-5.

Many surveillance cameras are using everywhere, the videos or images captured by these cameras are still dumped but they are not processed. Many methods are proposed for tracking and detecting the objects in the videos but we need the meaningful content called semantic content from these videos. Detecting Human activity recognition is quite complex. The proposed method called Semantic Content Extraction (SCE) from videos is used to identify the objects and the events present in the video. This model provides useful methodology for intruder detecting systems which provides the behavior and the activities performed by the intruder. Construction of ontology enhances the spatial and temporal relations between the objects or features extracted. Thus proposed system provides a best way for detecting the intruders, thieves and malpractices happening around us.