Biblio
While because the range of web users have increased exponentially, thus has the quantity of attacks that decide to use it for malicious functions. The vulnerability that has become usually exploited is thought as cross-site scripting (XSS). Cross-site Scripting (XSS) refers to client-side code injection attack whereby a malicious user will execute malicious scripts (also usually stated as a malicious payload) into a legitimate web site or web based application. XSS is amongst the foremost rampant of web based application vulnerabilities and happens once an internet based application makes use of un-validated or un-encoded user input at intervals the output it generates. In such instances, the victim is unaware that their data is being transferred from a website that he/she trusts to a different site controlled by the malicious user. In this paper we shall focus on type 1 or "non-persistent cross-site scripting". With non-persistent cross-site scripting, malicious code or script is embedded in a Web request, and then partially or entirely echoed (or "reflected") by the Web server without encoding or validation in the Web response. The malicious code or script is then executed in the client's Web browser which could lead to several negative outcomes, such as the theft of session data and accessing sensitive data within cookies. In order for this type of cross-site scripting to be successful, a malicious user must coerce a user into clicking a link that triggers the non-persistent cross-site scripting attack. This is usually done through an email that encourages the user to click on a provided malicious link, or to visit a web site that is fraught with malicious links. In this paper it will be discussed and elaborated as to how attack surfaces related to type 1 or "non-persistent cross-site scripting" attack shall be reduced using secure development life cycle practices and techniques.
Phishing as one of the most well-known cybercrime activities is a deception of online users to steal their personal or confidential information by impersonating a legitimate website. Several machine learning-based strategies have been proposed to detect phishing websites. These techniques are dependent on the features extracted from the website samples. However, few studies have actually considered efficient feature selection for detecting phishing attacks. In this work, we investigate an agreement on the definitive features which should be used in phishing detection. We apply Fuzzy Rough Set (FRS) theory as a tool to select most effective features from three benchmarked data sets. The selected features are fed into three often used classifiers for phishing detection. To evaluate the FRS feature selection in developing a generalizable phishing detection, the classifiers are trained by a separate out-of-sample data set of 14,000 website samples. The maximum F-measure gained by FRS feature selection is 95% using Random Forest classification. Also, there are 9 universal features selected by FRS over all the three data sets. The F-measure value using this universal feature set is approximately 93% which is a comparable result in contrast to the FRS performance. Since the universal feature set contains no features from third-part services, this finding implies that with no inquiry from external sources, we can gain a faster phishing detection which is also robust toward zero-day attacks.