Visible to the public Biblio

Filters: Keyword is phishing attack detection  [Clear All Filters]
2021-03-04
Abedin, N. F., Bawm, R., Sarwar, T., Saifuddin, M., Rahman, M. A., Hossain, S..  2020.  Phishing Attack Detection using Machine Learning Classification Techniques. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1125—1130.

Phishing attacks are the most common form of attacks that can happen over the internet. This method involves attackers attempting to collect data of a user without his/her consent through emails, URLs, and any other link that leads to a deceptive page where a user is persuaded to commit specific actions that can lead to the successful completion of an attack. These attacks can allow an attacker to collect vital information of the user that can often allow the attacker to impersonate the victim and get things done that only the victim should have been able to do, such as carry out transactions, or message someone else, or simply accessing the victim's data. Many studies have been carried out to discuss possible approaches to prevent such attacks. This research work includes three machine learning algorithms to predict any websites' phishing status. In the experimentation these models are trained using URL based features and attempted to prevent Zero-Day attacks by using proposed software proposal that differentiates the legitimate websites and phishing websites by analyzing the website's URL. From observations, the random forest classifier performed with a precision of 97%, a recall 99%, and F1 Score is 97%. Proposed model is fast and efficient as it only works based on the URL and it does not use other resources for analysis, as was the case for past studies.

2020-05-18
Peng, Tianrui, Harris, Ian, Sawa, Yuki.  2018.  Detecting Phishing Attacks Using Natural Language Processing and Machine Learning. 2018 IEEE 12th International Conference on Semantic Computing (ICSC). :300–301.
Phishing attacks are one of the most common and least defended security threats today. We present an approach which uses natural language processing techniques to analyze text and detect inappropriate statements which are indicative of phishing attacks. Our approach is novel compared to previous work because it focuses on the natural language text contained in the attack, performing semantic analysis of the text to detect malicious intent. To demonstrate the effectiveness of our approach, we have evaluated it using a large benchmark set of phishing emails.
2019-11-26
Zabihimayvan, Mahdieh, Doran, Derek.  2019.  Fuzzy Rough Set Feature Selection to Enhance Phishing Attack Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-6.

Phishing as one of the most well-known cybercrime activities is a deception of online users to steal their personal or confidential information by impersonating a legitimate website. Several machine learning-based strategies have been proposed to detect phishing websites. These techniques are dependent on the features extracted from the website samples. However, few studies have actually considered efficient feature selection for detecting phishing attacks. In this work, we investigate an agreement on the definitive features which should be used in phishing detection. We apply Fuzzy Rough Set (FRS) theory as a tool to select most effective features from three benchmarked data sets. The selected features are fed into three often used classifiers for phishing detection. To evaluate the FRS feature selection in developing a generalizable phishing detection, the classifiers are trained by a separate out-of-sample data set of 14,000 website samples. The maximum F-measure gained by FRS feature selection is 95% using Random Forest classification. Also, there are 9 universal features selected by FRS over all the three data sets. The F-measure value using this universal feature set is approximately 93% which is a comparable result in contrast to the FRS performance. Since the universal feature set contains no features from third-part services, this finding implies that with no inquiry from external sources, we can gain a faster phishing detection which is also robust toward zero-day attacks.