Visible to the public Biblio

Filters: Keyword is Information rates  [Clear All Filters]
2021-04-08
Vyetrenko, S., Khosla, A., Ho, T..  2009.  On combining information-theoretic and cryptographic approaches to network coding security against the pollution attack. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers. :788–792.
In this paper we consider the pollution attack in network coded systems where network nodes are computationally limited. We consider the combined use of cryptographic signature based security and information theoretic network error correction and propose a fountain-like network error correction code construction suitable for this purpose.
2019-12-05
Guang, Xuan, Yeung, Raymond w..  2019.  Local-Encoding-Preserving Secure Network Coding for Fixed Dimension. 2019 IEEE International Symposium on Information Theory (ISIT). :201-205.

In the paradigm of network coding, information-theoretic security is considered in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this paper, we consider the problem of secure network coding for flexible pairs of information rate and security level with any fixed dimension (equal to the sum of rate and security level). We present a novel approach for designing a secure linear network code (SLNC) such that the same SLNC can be applied for all the rate and security-level pairs with the fixed dimension. We further develop a polynomial-time algorithm for efficient implementation and prove that there is no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. Finally, by applying our approach as a crucial building block, we can construct a family of SLNCs that not only can be applied to all possible pairs of rate and security level but also share a common local encoding kernel at each intermediate node in the network.

2019-11-27
Sun, Xiaoli, Yang, Weiwei, Cai, Yueming, Tao, Liwei, Cai, Chunxiao.  2018.  Physical Layer Security in Wireless Information and Power Transfer Millimeter Wave Systems. 2018 24th Asia-Pacific Conference on Communications (APCC). :83–87.

This paper studies the physical layer security performance of a Simultaneous Wireless Information and Power Transfer (SWIPT) millimeter wave (mmWave) ultra-dense network under a stochastic geometry framework. Specifically, we first derive the energy-information coverage probability and secrecy probability in the considered system under time switching policies. Then the effective secrecy throughput (EST) which can characterize the trade-off between the energy coverage, secure and reliable transmission performance is derived. Theoretical analyses and simulation results reveal the design insights into the effects of various network parameters like, transmit power, time switching factor, transmission rate, confidential information rate, etc, on the secrecy performance. Specifically, it is impossible to realize the effective secrecy throughput improvement just by increasing the transmit power.