Visible to the public Biblio

Filters: Keyword is SWIPT  [Clear All Filters]
2020-07-13
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
2020-04-10
Hao, Hao, Ying Li, Xin.  2019.  Research on Physical Layer Security of Cooperative Networks Based on Swipt. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA). :583—586.
In Cooperative Networks based on simultaneous wireless information and power transfer (SWIPT), relay nodes collect the energy of radio signals received from source node and transmit the information of source nodes to destination nodes, which not only prolongs the service life of energy-constrained nodes, but also improves the ability of long-distance transmission of information. Due to the openness of energy harvesting, there may be eavesdropping users with malicious decoding. In order to study the security performance of the Cooperative Networks based on SWIPT, this paper mainly studies the physical layer security performance of this network, derives and simulates the expression of system security outage probability and throughput. The simulation results show that the system security performance is mainly influenced by time allocation parameter of SWIPT and decreases with the increase of target rate.
2019-11-27
Sun, Xiaoli, Yang, Weiwei, Cai, Yueming, Tao, Liwei, Cai, Chunxiao.  2018.  Physical Layer Security in Wireless Information and Power Transfer Millimeter Wave Systems. 2018 24th Asia-Pacific Conference on Communications (APCC). :83–87.

This paper studies the physical layer security performance of a Simultaneous Wireless Information and Power Transfer (SWIPT) millimeter wave (mmWave) ultra-dense network under a stochastic geometry framework. Specifically, we first derive the energy-information coverage probability and secrecy probability in the considered system under time switching policies. Then the effective secrecy throughput (EST) which can characterize the trade-off between the energy coverage, secure and reliable transmission performance is derived. Theoretical analyses and simulation results reveal the design insights into the effects of various network parameters like, transmit power, time switching factor, transmission rate, confidential information rate, etc, on the secrecy performance. Specifically, it is impossible to realize the effective secrecy throughput improvement just by increasing the transmit power.