Visible to the public Biblio

Filters: Keyword is Remote Terminal Units  [Clear All Filters]
2020-07-10
Javed Butt, Usman, Abbod, Maysam, Lors, Anzor, Jahankhani, Hamid, Jamal, Arshad, Kumar, Arvind.  2019.  Ransomware Threat and its Impact on SCADA. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :205—212.
Modern cybercrimes have exponentially grown over the last one decade. Ransomware is one of the types of malware which is the result of sophisticated attempt to compromise the modern computer systems. The governments and large corporations are investing heavily to combat this cyber threat against their critical infrastructure. It has been observed that over the last few years that Industrial Control Systems (ICS) have become the main target of Ransomware due to the sensitive operations involved in the day to day processes of these industries. As the technology is evolving, more and more traditional industrial systems are replaced with advanced industry methods involving advanced technologies such as Internet of Things (IoT). These technology shift help improve business productivity and keep the company's global competitive in an overflowing competitive market. However, the systems involved need secure measures to protect integrity and availability which will help avoid any malfunctioning to their operations due to the cyber-attacks. There have been several cyber-attack incidents on healthcare, pharmaceutical, water cleaning and energy sector. These ICS' s are operated by remote control facilities and variety of other devices such as programmable logic controllers (PLC) and sensors to make a network. Cyber criminals are exploring vulnerabilities in the design of these ICS's to take the command and control of these systems and disrupt daily operations until ransomware is paid. This paper will provide critical analysis of the impact of Ransomware threat on SCADA systems.
2020-07-06
Xiong, Leilei, Grijalva, Santiago.  2019.  N-1 RTU Cyber-Physical Security Assessment Using State Estimation. 2019 IEEE Power Energy Society General Meeting (PESGM). :1–5.
Real-time supervisory control and data acquisition (SCADA) systems use remote terminal units (RTUs) to monitor and manage the flow of power at electrical substations. As their connectivity to different utility and private networks increases, RTUs are becoming more vulnerable to cyber-attacks. Some attacks seek to access RTUs to directly control power system devices with the intent to shed load or cause equipment damage. Other attacks (such as denial-of-service) target network availability and seek to block, delay, or corrupt communications between the RTU and the control center. In the most severe case, when communications are entirely blocked, the loss of an RTU can cause the power system to become unobservable. It is important to understand how losing an RTU impacts the system state (bus voltage magnitudes and angles). The system state is determined by the state estimator and serves as the input to other critical EMS applications. There is currently no systematic approach for assessing the cyber-physical impact of losing RTUs. This paper proposes a methodology for N-1 RTU cyber-physical security assessment that could benefit power system control and operation. We demonstrate our approach on the IEEE 14-bus system as well as on a synthetic 200-bus system.
Castillo, Anya, Arguello, Bryan, Cruz, Gerardo, Swiler, Laura.  2019.  Cyber-Physical Emulation and Optimization of Worst-Case Cyber Attacks on the Power Grid. 2019 Resilience Week (RWS). 1:14–18.

In this paper we report preliminary results from the novel coupling of cyber-physical emulation and interdiction optimization to better understand the impact of a CrashOverride malware attack on a notional electric system. We conduct cyber experiments where CrashOverride issues commands to remote terminal units (RTUs) that are controlling substations within a power control area. We identify worst-case loss of load outcomes with cyber interdiction optimization; the proposed approach is a bilevel formulation that incorporates RTU mappings to controllable loads, transmission lines, and generators in the upper-level (attacker model), and a DC optimal power flow (DCOPF) in the lower-level (defender model). Overall, our preliminary results indicate that the interdiction optimization can guide the design of experiments instead of performing a “full factorial” approach. Likewise, for systems where there are important dependencies between SCADA/ICS controls and power grid operations, the cyber-physical emulations should drive improved parameterization and surrogate models that are applied in scalable optimization techniques.

2019-12-02
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.