Biblio
Reverse engineering is a manually intensive but necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different. A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have developed an assembly code representation learning model \textbackslashemphAsm2Vec. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations.
Correct compilers perform program transformations preserving input/output behaviours of programs. Yet, correctness does not prevent program optimisations from introducing information-flow leaks that would make the target program more vulnerable to side-channel attacks than the source program. To tackle this problem, we propose a notion of Information-Flow Preserving (IFP) program transformation which ensures that a target program is no more vulnerable to passive side-channel attacks than a source program. To protect against a wide range of attacks, we model an attacker who is granted arbitrary memory accesses for a pre-defined set of observation points. We propose a compositional proof principle for proving that a transformation is IFP. Using this principle, we show how a translation validation technique can be used to automatically verify and even close information-flow leaks introduced by standard compiler passes such as dead-store elimination and register allocation. The technique has been experimentally validated on the CompCert C compiler.