Visible to the public Biblio

Filters: Keyword is noisy channel  [Clear All Filters]
2020-06-15
Kin-Cleaves, Christy, Ker, Andrew D..  2018.  Adaptive Steganography in the Noisy Channel with Dual-Syndrome Trellis Codes. 2018 IEEE International Workshop on Information Forensics and Security (WIFS). :1–7.
Adaptive steganography aims to reduce distortion in the embedding process, typically using Syndrome Trellis Codes (STCs). However, in the case of non-adversarial noise, these are a bad choice: syndrome codes are fragile by design, amplifying the channel error rate into unacceptably-high payload error rates. In this paper we examine the fragility of STCs in the noisy channel, and consider how this can be mitigated if their use cannot be avoided altogether. We also propose an extension called Dual-Syndrome Trellis Codes, that combines error correction and embedding in the same Viterbi process, which slightly outperforms a straight-forward combination of standard forward error correction and STCs.
2019-12-05
Hayashi, Masahito.  2018.  Secure Physical Layer Network Coding versus Secure Network Coding. 2018 IEEE Information Theory Workshop (ITW). :1-5.

Secure network coding realizes the secrecy of the message when the message is transmitted via noiseless network and a part of edges or a part of intermediate nodes are eavesdropped. In this framework, if the channels of the network has noise, we apply the error correction to noisy channel before applying the secure network coding. In contrast, secure physical layer network coding is a method to securely transmit a message by a combination of coding operation on nodes when the network is given as a set of noisy channels. In this paper, we give several examples of network, in which, secure physical layer network coding realizes a performance that cannot be realized by secure network coding.