Visible to the public Biblio

Filters: Keyword is polynomial-time algorithm  [Clear All Filters]
2020-06-08
Sahabandu, Dinuka, Moothedath, Shana, Bushnell, Linda, Poovendran, Radha, Aller, Joey, Lee, Wenke, Clark, Andrew.  2019.  A Game Theoretic Approach for Dynamic Information Flow Tracking with Conditional Branching. 2019 American Control Conference (ACC). :2289–2296.
In this paper, we study system security against Advanced Persistent Threats (APTs). APTs are stealthy and persistent but APTs interact with system and introduce information flows in the system as data-flow and control-flow commands. Dynamic Information Flow Tracking (DIFT) is a promising detection mechanism against APTs which taints suspicious input sources in the system and performs online security analysis when a tainted information is used in unauthorized manner. Our objective in this paper is to model DIFT that handle data-flow and conditional branches in the program that arise from control-flow commands. We use game theoretic framework and provide the first analytical model of DIFT with data-flow and conditional-branch tracking. Our game model which is an undiscounted infinite-horizon stochastic game captures the interaction between APTs and DIFT and the notion of conditional branching. We prove that the best response of the APT is a maximal reachability probability problem and provide a polynomial-time algorithm to find the best response by solving a linear optimization problem. We formulate the best response of the defense as a linear optimization problem and show that an optimal solution to the linear program returns a deterministic optimal policy for the defense. Since finding Nash equilibrium for infinite-horizon undiscounted stochastic games is computationally difficult, we present a nonlinear programming based polynomial-time algorithm to find an E-Nash equilibrium. Finally, we perform experimental analysis of our algorithm on real-world data for NetRecon attack augmented with conditional branching.
2019-12-05
Guang, Xuan, Yeung, Raymond w..  2019.  Local-Encoding-Preserving Secure Network Coding for Fixed Dimension. 2019 IEEE International Symposium on Information Theory (ISIT). :201-205.

In the paradigm of network coding, information-theoretic security is considered in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this paper, we consider the problem of secure network coding for flexible pairs of information rate and security level with any fixed dimension (equal to the sum of rate and security level). We present a novel approach for designing a secure linear network code (SLNC) such that the same SLNC can be applied for all the rate and security-level pairs with the fixed dimension. We further develop a polynomial-time algorithm for efficient implementation and prove that there is no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. Finally, by applying our approach as a crucial building block, we can construct a family of SLNCs that not only can be applied to all possible pairs of rate and security level but also share a common local encoding kernel at each intermediate node in the network.