Visible to the public Biblio

Filters: Keyword is spectrum sensing data falsification attack  [Clear All Filters]
2021-03-15
Morozov, M. Y., Perfilov, O. Y., Malyavina, N. V., Teryokhin, R. V., Chernova, I. V..  2020.  Combined Approach to SSDF-Attacks Mitigation in Cognitive Radio Networks. 2020 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Cognitive radio systems aim to solve the issue of spectrum scarcity through implementation of dynamic spectrum management and cooperative spectrum access. However, the structure of such systems introduced unique types of vulnerabilities and attacks, one of which is spectrum sensing data falsification attack (SSDF). In such attacks malicious users provide incorrect observations to the fusion center of the system, which may result in severe quality of service degradation and interference for licensed users. In this paper we investigate this type of attacks and propose a combined approach to their mitigation. On the first step a reputational method is used to isolate the initially untrustworthy nodes, on the second step specialized q-out-of-m fusion rule is utilized to mitigate the remains of attack. In this paper we present theoretical analysis of the proposed combined method.
2019-12-05
Ngomane, I., Velempini, M., Dlamini, S. V..  2018.  The Detection of the Spectrum Sensing Data Falsification Attack in Cognitive Radio Ad Hoc Networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1-5.

Cognitive radio technology addresses the spectrum scarcity challenges by allowing unlicensed cognitive devices to opportunistically utilize spectrum band allocated to licensed devices. However, the openness of the technology has introduced several attacks to cognitive radios, one which is the spectrum sensing data falsification attack. In spectrum sensing data falsification attack, malicious devices share incorrect spectrum observations to other cognitive radios. This paper investigates the spectrum sensing data falsification attack in cognitive radio networks. We use the modified Z-test to isolate extreme outliers in the network. The q-out-of-m rule scheme is implemented to mitigate the spectrum sensing data falsification attack, where a random number m is selected from the sensing results and q is the final decision from m. The scheme does not require the services of a fusion Centre for decision making. This paper presents the theoretical analysis of the proposed scheme.