Visible to the public Biblio

Filters: Keyword is identity based encryption  [Clear All Filters]
2023-07-13
Jeyakumar, D, Chidambarathanu, K., Pradeepkumar, S., Anish, T.P..  2022.  OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.
2021-03-29
Khan, S., Jadhav, A., Bharadwaj, I., Rooj, M., Shiravale, S..  2020.  Blockchain and the Identity based Encryption Scheme for High Data Security. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1005—1008.

Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.

2020-09-28
Fimiani, Gianluca.  2018.  Supporting Privacy in a Cloud-Based Health Information System by Means of Fuzzy Conditional Identity-Based Proxy Re-encryption (FCI-PRE). 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :569–572.
Healthcare is traditionally a data-intensive domain, where physicians needs complete and updated anamnesis of their patients to take the best medical decisions. Dematerialization of the medical documents and the consequent health information systems to share electronic health records among healthcare providers are paving the way to an effective solution to this issue. However, they are also paving the way of non-negligible privacy issues that are limiting the full application of these technologies. Encryption is a valuable means to resolve such issues, however the current schemes are not able to cope with all the needs and challenges that the cloud-based sharing of electronic health records imposes. In this work we have investigated the use of a novel scheme where encryption is combined with biometric authentication, and defines a preliminary solution.
2020-09-14
Chatterjee, Urbi, Govindan, Vidya, Sadhukhan, Rajat, Mukhopadhyay, Debdeep, Chakraborty, Rajat Subhra, Mahata, Debashis, Prabhu, Mukesh M..  2019.  Building PUF Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing. 16:424–437.
Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such mechanism, it puts forward an open problem of how to develop such mechanism without needing to store the secret challenge-response pair (CRP) explicitly at the verifier end. In this paper, we develop an authentication and key exchange protocol by combining the ideas of Identity based Encryption (IBE), PUFs and Key-ed Hash Function to show that this combination can help to do away with this requirement. The security of the protocol is proved formally under the Session Key Security and the Universal Composability Framework. A prototype of the protocol has been implemented to realize a secured video surveillance camera using a combination of an Intel Edison board, with a Digilent Nexys-4 FPGA board consisting of an Artix-7 FPGA, together serving as the IoT node. We show, though the stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard network penetration tools, the camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT infrastructure making the protocol deployable for the industry.
2017-05-22
O'Neill, Maire, O'Sullivan, Elizabeth, McWilliams, Gavin, Saarinen, Markku-Juhani, Moore, Ciara, Khalid, Ayesha, Howe, James, del Pino, Rafael, Abdalla, Michel, Regazzoni, Francesco et al..  2016.  Secure Architectures of Future Emerging Cryptography SAFEcrypto. Proceedings of the ACM International Conference on Computing Frontiers. :315–322.

Funded under the European Union's Horizon 2020 research and innovation programme, SAFEcrypto will provide a new generation of practical, robust and physically secure post-quantum cryptographic solutions that ensure long-term security for future ICT systems, services and applications. The project will focus on the remarkably versatile field of Lattice-based cryptography as the source of computational hardness, and will deliver optimised public key security primitives for digital signatures and authentication, as well identity based encryption (IBE) and attribute based encryption (ABE). This will involve algorithmic and design optimisations, and implementations of lattice-based cryptographic schemes addressing cost, energy consumption, performance and physical robustness. As the National Institute of Standards and Technology (NIST) prepares for the transition to a post-quantum cryptographic suite B, urging organisations that build systems and infrastructures that require long-term security to consider this transition in architectural designs; the SAFEcrypto project will provide Proof-of-concept demonstrators of schemes for three practical real-world case studies with long-term security requirements, in the application areas of satellite communications, network security and cloud. The goal is to affirm Lattice-based cryptography as an effective replacement for traditional number-theoretic public-key cryptography, by demonstrating that it can address the needs of resource-constrained embedded applications, such as mobile and battery-operated devices, and of real-time high performance applications for cloud and network management infrastructures.

2015-05-01
Saavedra Benitez, Y.I., Ben-Othman, J., Claude, J.-P..  2014.  Performance evaluation of security mechanisms in RAOLSR protocol for Wireless Mesh Networks. Communications (ICC), 2014 IEEE International Conference on. :1808-1812.

In this paper, we have proposed the IBE-RAOLSR and ECDSA-RAOLSR protocols for WMNs (Wireless Mesh Networks), which contributes to security routing protocols. We have implemented the IBE (Identity Based Encryption) and ECDSA (Elliptic Curve Digital Signature Algorithm) methods to secure messages in RAOLSR (Radio Aware Optimized Link State Routing), namely TC (Topology Control) and Hello messages. We then compare the ECDSA-based RAOLSR with IBE-based RAOLSR protocols. This study shows the great benefits of the IBE technique in securing RAOLSR protocol for WMNs. Through extensive ns-3 (Network Simulator-3) simulations, results have shown that the IBE-RAOLSR outperforms the ECDSA-RAOLSR in terms of overhead and delay. Simulation results show that the utilize of the IBE-based RAOLSR provides a greater level of security with light overhead.