Visible to the public Biblio

Filters: Keyword is secure channels  [Clear All Filters]
2019-12-11
Yan-Tao, Zhong.  2018.  Lattice Based Authenticated Key Exchange with Universally Composable Security. 2018 International Conference on Networking and Network Applications (NaNA). :86–90.

The Internet of things (IoT) has experienced rapid development these years, while its security and privacy remains a major challenge. One of the main security goals for the IoT is to build secure and authenticated channels between IoT nodes. A common way widely used to achieve this goal is using authenticated key exchange protocol. However, with the increasing progress of quantum computation, most authenticated key exchange protocols nowadays are threatened by the rise of quantum computers. In this study, we address this problem by using ring-SIS based KEM and hash function to construct an authenticated key exchange scheme so that we base the scheme on lattice based hard problems believed to be secure even with quantum attacks. We also prove the security of universal composability of our scheme. The scheme hence can keep security while runs in complicated environment.

Skrobot, Marjan, Lancrenon, Jean.  2018.  On Composability of Game-Based Password Authenticated Key Exchange. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :443–457.

It is standard practice that the secret key derived from an execution of a Password Authenticated Key Exchange (PAKE) protocol is used to authenticate and encrypt some data payload using a Symmetric Key Protocol (SKP). Unfortunately, most PAKEs of practical interest are studied using so-called game-based models, which – unlike simulation models – do not guarantee secure composition per se. However, Brzuska et al. (CCS 2011) have shown that a middle ground is possible in the case of authenticated key exchange that relies on Public-Key Infrastructure (PKI): the game-based models do provide secure composition guarantees when the class of higher-level applications is restricted to SKPs. The question that we pose in this paper is whether or not a similar result can be exhibited for PAKE. Our work answers this question positively. More specifically, we show that PAKE protocols secure according to the game-based Real-or-Random (RoR) definition with the weak forward secrecy of Abdalla et al. (S&P 2015) allow for safe composition with arbitrary, higher-level SKPs. Since there is evidence that most PAKEs secure in the Find-then-Guess (FtG) model are in fact secure according to RoR definition, we can conclude that nearly all provably secure PAKEs enjoy a certain degree of composition, one that at least covers the case of implementing secure channels.