Biblio
IoT devices introduce unprecedented threats into home and professional networks. As they fail to adhere to security best practices, they are broadly exploited by malicious actors to build botnets or steal sensitive information. Their adoption challenges established security standard as classic security measures are often inappropriate to secure them. This is even more problematic in sensitive environments where the presence of insecure IoTs can be exploited to bypass strict security policies. In this paper, we demonstrate an attack against a highly secured network using a Bluetooth smart bulb. This attack allows a malicious actor to take advantage of a smart bulb to exfiltrate data from an air gapped network.
The Internet of Things (IoT) revolution has brought millions of small, low-cost, connected devices into our homes, cities, infrastructure, and more. However, these devices are often plagued by security vulnerabilities that pose threats to user privacy or can threaten the Internet architecture as a whole. Home networks can be particularly vulnerable to these threats as they typically have no network administrator and often contain unpatched or otherwise vulnerable devices. In this paper, we argue that the unique security challenges of home networks require a new network-layer architecture to both protect against external threats and mitigate attacks from compromised devices. We present initial findings based on traffic analysis from a small-scale IoT testbed toward identifying predictable patterns in IoT traffic that may allow construction of a policy-based framework to restrict malicious traffic. Based on our observations, we discuss key features for the design of this architecture to promote future developments in network-layer security in smart home networks.
A smart grid (SG) consists of many subsystems and networks, all working together as a system of systems, many of which are vulnerable and can be attacked remotely. Therefore, security has been identified as one of the most challenging topics in SG development, and designing a mutual authentication scheme and a key management protocol is the first important step. This paper proposes an efficient scheme that mutually authenticates a smart meter of a home area network and an authentication server in SG by utilizing an initial password, by decreasing the number of steps in the secure remote password protocol from five to three and the number of exchanged packets from four to three. Furthermore, we propose an efficient key management protocol based on our enhanced identity-based cryptography for secure SG communications using the public key infrastructure. Our proposed mechanisms are capable of preventing various attacks while reducing the management overhead. The improved efficiency for key management is realized by periodically refreshing all public/private key pairs as well as any multicast keys in all the nodes using only one newly generated function broadcasted by the key generator entity. Security and performance analyses are presented to demonstrate these desirable attributes.
Eduroam is a secure WLAN roaming service between academic and research institutions around the globe. It allows users from participating institutions secure Internet access at any other participating visited institution using their home credentials. The authentication credentials are verified by the home institution, while authorization is done by the visited institution. The user receives an IP address in the range of the visited institution, and accesses the Internet through the firewall and proxy servers of the visited institution. However, access granted to services that authorize via an IP address of the visited institution may include access to services that are not allowed at the home institution, due to legal agreements. This paper looks at typical legal agreements with service providers and explores the risks and countermeasures that need to be considered when using eduroam.
Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.
The concept of Smart grid technology sets greater demands for reliability and resilience on communications infrastructure. Wireless communication is a promising alternative for distribution level, Home Area Network (HAN), smart metering and even the backbone networks that connect smart grid applications to control centres. In this paper, the reliability and resilience of smart grid communication network is analysed using the IEEE 802.11 communication technology in both infrastructure single hop and mesh multiple-hop topologies for smart meters in a Building Area Network (BAN). Performance of end to end delay and Round Trip Time (RTT) of an infrastructure mode smart meter network for Demand Response (DR) function is presented. Hybrid deployment of these network topologies is also suggested to provide resilience and redundancy in the network during network failure or when security of the network is circumvented. This recommendation can also be deployed in other areas of the grid where wireless technologies are used. DR communication from consumer premises is used to show the performance of an infrastructure mode smart metering network.